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Preface

The sixth edition of this worldwide used textbook was thoroughly re-
vised and extended. Throughout the whole text you will find numerous
improvements, extensions, and updates. Above all, I would like to draw
your attention to two major changes.

Firstly, the whole textbook is now clearly partitioned into basic and
advanced material in order to cope with the ever-increasing field of digi-
tal image processing. The most important equations are put into framed
boxes. The advanced sections are located in the second part of each
chapter and are marked by italic headlines and by a smaller typeface.
In this way, you can first work your way through the basic principles
of digital image processing without getting overwhelmed by the wealth
of the material. You can extend your studies later to selected topics of
interest.

The second most notable extension are exercises that are now in-
cluded at the end of each chapter. These exercise help you to test your
understanding, train your skills, and introduce you to real-world image
processing tasks. The exercises are marked with one to three stars to
indicate their difficulty. An important part of the exercises is a wealth
of interactive computer exercises, which cover all topics of this text-
book. These exercises are performed with the image processing soft-
ware heurisko® (http://www.heurisko.de), which is included on the
accompanying CD-ROM. In this way you can get own practical experi-
ence with almost all topics and algorithms covered by this book. The
CD-ROM also includes a large collection of images, image sequences,
and volumetric images that can be used together with the computer ex-
ercises. Information about the solutions of the exercises and updates of
the computer exercises can be found on the homepage of the author at
http://www.bernd-jaehne.de.

Each chapter closes with a section “Further Reading” that guides the
interested reader to further references. The appendix includes two chap-
ters. Appendix A gives a quick access to a collection of often used refer-
ence material and Appendix B details the notation used throughout the
book. The complete text of the book is now available on the accompany-
ing CD-ROM. It is hyperlinked so that it can be used in a very flexible way.

\Y%


http://www.heurisko.de
http://www.bernd-jaehne.de

< start menu

VI

You can jump from the table of contents to the corresponding section,
from citations to the bibliography, from the index to the corresponding
page, and to any other cross-references. It is also possible to execute the
computer exercises directly from the PDF document.

I would like to thank all individuals and organizations who have con-
tributed visual material for this book. The corresponding acknowledge-
ments can be found where the material is used. I would also like to
express my sincere thanks to the staff of Springer-Verlag for their con-
stant interest in this book and their professional advice. Special thanks
are due to my friends at AEON Verlag & Studio, Hanau, Germany. With-
out their dedication and professional knowledge it would not have been
possible to produce this book and, in particular, the accompanying CD-
ROM.

Finally, I welcome any constructive input from you, the reader. I am
grateful for comments on improvements or additions and for hints on
errors, omissions, or typing errors, which — despite all the care taken —
may have slipped attention.

Heidelberg, January 2005 Bernd Jahne

From the preface of the fifth edition

As the fourth edition, the fifth edition is completely revised and extended. The
whole text of the book is now arranged in 20 instead of 16 chapters. About one
third of text is marked as advanced material. In this way, you will find a quick
and systematic way through the basic material and you can extend your studies
later to special topics of interest.

The most notable extensions include a detailed discussion on random variables
and fields (Chapter 3), 3-D imaging techniques (Chapter 8) and an approach to
regularized parameter estimation unifying techniques including inverse prob-
lems, adaptive filter techniques such as anisotropic diffusion, and variational
approaches for optimal solutions in image restoration, tomographic reconstruc-
tion, segmentation, and motion determination (Chapter 17). Each chapter now
closes with a section “Further Reading” that guides the interested reader to
further references.

The complete text of the book is now available on the accompanying CD-ROM.
It is hyperlinked so that it can be used in a very flexible way. You can jump
from the table of contents to the corresponding section, from citations to the
bibliography, from the index to the corresponding page, and to any other cross-
references.

Heidelberg, November 2001 Bernd Jahne

From the preface of the fourth edition

In a fast developing area such as digital image processing a book that appeared
in its first edition in 1991 required a complete revision just six years later. But
what has not changed is the proven concept, offering a systematic approach to
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digital image processing with the aid of concepts and general principles also
used in other areas of natural science. In this way, a reader with a general
background in natural science or an engineering discipline is given fast access
to the complex subject of image processing. The book covers the basics of
image processing. Selected areas are treated in detail in order to introduce the
reader both to the way of thinking in digital image processing and to some
current research topics. Whenever possible, examples and image material are
used to illustrate basic concepts. It is assumed that the reader is familiar with
elementary matrix algebra and the Fourier transform.

The new edition contains four parts. Part 1 summarizes the basics required for
understanding image processing. Thus there is no longer a mathematical appen-
dix as in the previous editions. Part 2 on image acquisition and preprocessing
has been extended by a detailed discussion of image formation. Motion analysis
has been integrated into Part 3 as one component of feature extraction. Object
detection, object form analysis, and object classification are put together in Part
4 on image analysis.

Generally, this book is not restricted to 2-D image processing. Wherever possi-
ble, the subjects are treated in such a manner that they are also valid for higher-
dimensional image data (volumetric images, image sequences). Likewise, color
images are considered as a special case of multichannel images.

Heidelberg, May 1997 Bernd Jahne

From the preface of the first edition

Digital image processing is a fascinating subject in several aspects. Human be-
ings perceive most of the information about their environment through their
visual sense. While for a long time images could only be captured by photo-
graphy, we are now at the edge of another technological revolution which al-
lows image data to be captured, manipulated, and evaluated electronically with
computers. With breathtaking pace, computers are becoming more powerful
and at the same time less expensive, so that widespread applications for digital
image processing emerge. In this way, image processing is becoming a tremen-
dous tool for analyzing image data in all areas of natural science. For more
and more scientists digital image processing will be the key to study complex
scientific problems they could not have dreamed of tackling only a few years
ago. A door is opening for new interdisciplinary cooperation merging computer
science with the corresponding research areas.

Many students, engineers, and researchers in all natural sciences are faced with
the problem of needing to know more about digital image processing. This
book is written to meet this need. The author — himself educated in physics
— describes digital image processing as a new tool for scientific research. The
book starts with the essentials of image processing and leads — in selected
areas — to the state-of-the art. This approach gives an insight as to how image
processing really works. The selection of the material is guided by the needs
of a researcher who wants to apply image-processing techniques in his or her
field. In this sense, this book tries to offer an integral view of image processing
from image acquisition to the extraction of the data of interest. Many concepts
and mathematical tools that find widespread application in natural sciences are
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also applied in digital image processing. Such analogies are pointed out, since
they provide an easy access to many complex problems in digital image process-
ing for readers with a general background in natural sciences. The discussion
of the general concepts is supplemented with examples from applications on
PC-based image processing systems and ready-to-use implementations of im-
portant algorithms.

I am deeply indebted to the many individuals who helped me to write this book.
I do this by tracing its history. In the early 1980s, when I worked on the physics
of small-scale air-sea interaction at the Institute of Environmental Physics at Hei-
delberg University, it became obvious that these complex phenomena could not
be adequately treated with point measuring probes. Consequently, a number of
area extended measuring techniques were developed. Then I searched for tech-
niques to extract the physically relevant data from the images and sought for
colleagues with experience in digital image processing. The first contacts were
established with the Institute for Applied Physics at Heidelberg University and
the German Cancer Research Center in Heidelberg. I would like to thank Prof.
Dr. J. Bille, Dr. J. Dengler and Dr. M. Schmidt cordially for many eye-opening
conversations and their cooperation.

I would also like to thank Prof. Dr. K. O. Minnich, director of the Institute for
Environmental Physics. From the beginning, he was open-minded about new
ideas on the application of digital image processing techniques in environmen-
tal physics. It is due to his farsightedness and substantial support that the
research group “Digital Image Processing in Environmental Physics” could de-
velop so fruitfully at his institute. Many of the examples shown in this book
are taken from my research at Heidelberg University and the Scripps Institution
of Oceanography. I gratefully acknowledge financial support for this research
from the German Science Foundation, the European Community, the US National
Science Foundation, and the US Office of Naval Research.

La Jolla, California, and Heidelberg, spring 1991 Bernd Jahne
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1 Applications and Tools

1.1 A Tool for Science and Technique

From the beginning of science, visual observation has played a major
role. At that time, the only way to document the results of an experi-
ment was by verbal description and manual drawings. The next major
step was the invention of photography which enabled results to be docu-
mented objectively. Three prominent examples of scientific applications
of photography are astronomy, photogrammetry, and particle physics.
Astronomers were able to measure positions and magnitudes of stars
and photogrammeters produced topographic maps from aerial images.
Searching through countless images from hydrogen bubble chambers led
to the discovery of many elementary particles in physics. These manual
evaluation procedures, however, were time consuming. Some semi- or
even fully automated optomechanical devices were designed. However,
they were adapted to a single specific purpose. This is why quantita-
tive evaluation of images did not find widespread application at that
time. Generally, images were only used for documentation, qualitative
description, and illustration of the phenomena observed.

Nowadays, we are in the middle of a second revolution sparked by the
rapid progress in video and computer technology. Personal computers
and workstations have become powerful enough to process image data.
As a result, multimedia software and hardware is becoming standard
for the handling of images, image sequences, and even 3-D visualiza-
tion. The technology is now available to any scientist or engineer. In
consequence, image processing has expanded and is further rapidly ex-
panding from a few specialized applications into a standard scientific
tool. Image processing techniques are now applied to virtually all the
natural sciences and technical disciplines.

A simple example clearly demonstrates the power of visual informa-
tion. Imagine you had the task of writing an article about a new technical
system, for example, a new type of solar power plant. It would take an
enormous effort to describe the system if you could not include images
and technical drawings. The reader of your imageless article would also
have a frustrating experience. He or she would spend a lot of time trying
to figure out how the new solar power plant worked and might end up
with only a poor picture of what it looked like.

3

B. Jdhne, Digital Image Processing Copyright © 2005 by Springer-Verlag
ISBN 3-540-24035-7 All rights of reproduction in any form reserved.
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Figure 1.1: Measurement of particles with imaging techniques: a Bubbles sub-
merged by breaking waves using a telecentric illumination and imaging system;
from Geifler and Jdhne [59]. b Soap bubbles. c Electron microscopy of color
pigment particles (courtesy of Dr. Klee, Hoechst AG, Frankfurt).

Technical drawings and photographs of the solar power plant would
be of enormous help for readers of your article. They would immediately
have an idea of the plant and could study details in the images that were
not described in the text, but which caught their attention. Pictures pro-
vide much more information, a fact which can be precisely summarized
by the saying that “a picture is worth a thousand words”.

Another observation is of interest. If the reader later heard of the new
solar plant, he or she could easily recall what it looked like, the object
“solar plant” being instantly associated with an image.

1.2 Examples of Applications

In this section, examples for scientific and technical applications of digi-
tal image processing are discussed. The examples demonstrate that im-
age processing enables complex phenomena to be investigated, which
could not be adequately accessed with conventional measuring tech-
niques.
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b

Figure 1.2: Industrial parts that are checked by a visual inspection system for
the correct position and diameter of holes (courtesy of Martin von Brocke, Robert
Bosch GmbH).

1.2.1 Counting and Gauging

A classic task for digital image processing is counting particles and mea-
suring their size distribution. Figure 1.1 shows three examples with very
different particles: gas bubbles submerged by breaking waves, soap bub-
bles, and pigment particles. The first challenge with tasks like this is to
find an imaging and illumination setup that is well adapted to the mea-
suring problem. The bubble images in Fig. 1.1a are visualized by a tele-
centric illumination and imaging system. With this setup, the principal
rays are parallel to the optical axis. Therefore the size of the imaged
bubbles does not depend on their distance. The sampling volume for
concentration measurements is determined by estimating the degree of
blurring in the bubbles.

It is much more difficult to measure the shape of the soap bubbles
shown in Fig. 1.1b, because they are transparent. Therefore, deeper lying
bubbles superimpose the image of the bubbles in the front layer. More-
over, the bubbles show deviations from a circular shape so that suitable
parameters must be found to describe their shape.

A third application is the measurement of the size distribution of
color pigment particles. This significantly influences the quality and
properties of paint. Thus, the measurement of the distribution is an
important quality control task. The image in Fig. 1.1c taken with a trans-
mission electron microscope shows the challenge of this image process-
ing task. The particles tend to cluster. Consequently, these clusters have
to be identified, and — if possible — to be separated in order not to bias
the determination of the size distribution.

Almost any product we use nowadays has been checked for defects
by an automatic visual inspection system. One class of tasks includes
the checking of correct sizes and positions. Some example images are
shown in Fig. 1.2. Here the position, diameter, and roundness of the
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Figure 1.3: Focus series of a press form of PMMA with narrow rectangular holes
imaged with a confocal technique using statistically distributed intensity patterns.
The images are focused on the following depths measured from the bottom of the
holes: a 16 um, b 480 um, and c 620 um (surface of form). d 3-D reconstruction.
From Scheuermann et al. [180].

holes is checked. Figure 1.2c illustrates that it is not easy to illuminate
metallic parts. The edge of the hole on the left is partly bright and thus
it is more difficult to detect and to measure the holes correctly.

1.2.2 Exploring 3-D Space

Inimages, 3-D scenes are projected on a 2-D image plane. Thus the depth
information is lost and special imaging techniques are required to re-
trieve the topography of surfaces or volumetric images. In recent years,
alarge variety of range imaging and volumetric imaging techniques have
been developed. Therefore image processing techniques are also applied
to depth maps and volumetric images.

Figure 1.3 shows the reconstruction of a press form for microstruc-
tures that has been imaged by a special type of confocal microscopy
[180]. The form is made out of PMMA, a semi-transparent plastic ma-
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Figure 1.4: Depth map of a plant leaf measured by optical coherency tomo-
graphy (courtesy of Jochen Restle, Robert Bosch GmbH).

Figure 1.5: Horizontal scans at the eye level across a human head with a tumor.
The scans are taken with x-rays (left), T2 weighted magnetic resonance tomog-
raphy (middle), and positron emission tomography (right; images courtesy of
Michael Bock, DKFZ Heidelberg).

terial with a smooth surface, so that it is almost invisible in standard
microscopy. The form has narrow, 500 um deep rectangular holes.

In order to make the transparent material visible, a statistically dis-
tributed pattern is projected through the microscope optics onto the
focal plane. This pattern only appears sharp on parts that lie in the fo-
cal plane. The pattern gets more blurred with increasing distance from
the focal plane. In the focus series shown in Fig. 1.3, it can be seen that
first the patterns of the material in the bottom of the holes become sharp
(Fig. 1.3a), then after moving the object away from the optics, the final
image focuses at the surface of the form (Fig. 1.3c). The depth of the
surface can be reconstructed by searching for the position of maximum
contrast for each pixel in the focus series (Fig. 1.3d).

Figure 1.4 shows the depth map of a plant leaf that has been imaged
with another modern optical 3-D measuring technique known as white-
light interferometry or coherency radar. It is an interferometric tech-
nique that uses light with a coherency length of only a few wavelengths.
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Figure 1.6: Growth studies in botany: a Rizinus plant leaf; b map of growth rate;
¢ Growth of corn roots (courtesy of Uli Schurr and Stefan Terjung, Institute of
Botany, University of Heidelberg).

Thus interference patterns occur only with very short path differences
in the interferometer. This effect can be utilized to measure distances
with accuracy in the order of a wavelength of light used.

Medical research is the driving force for the development of modern
volumetric imaging techniques that allow us to look into the interior of
3-D objects. Figure 1.5 shows a scan through a human head. Whereas
x-rays (computer tomography, CT) predominantly delineate the bone
structures, the T2-weighted magnetic resonance tomography (MRT) shows
the soft tissues, the eyes and scar tissue with high signal intensity. With
positron emission tomography (PET) a high signal is observed at the tu-
mour location because here the administered positron emitter is accu-
mulating.

1.2.3 Exploring Dynamic Processes

The exploration of dynamic processes is possible by analyzing image
sequences. The enormous potential of this technique is illustrated with
a number of examples in this section.

In botany, a central topic is the study of the growth of plants and
the mechanisms controlling growth processes. Figure 1.6a shows a Riz-
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Figure 1.7: Motility assay for motion analysis of motor proteins (courtesy of
Dietmar Uttenweiler, Institute of Physiology, University of Heidelberg).

inus plant leaf from which a map of the growth rate (percent increase of
area per unit time) has been determined by a time-lapse image sequence
where about every minute an image was taken. This new technique for
growth rate measurements is sensitive enough for area-resolved mea-
surements of the diurnal cycle.

Figure 1.6c shows an image sequence (from left to right) of a growing
corn root. The gray scale in the image indicates the growth rate, which
is largest close to the tip of the root.

In science, images are often taken at the limit of the technically pos-
sible. Thus they are often plagued by high noise levels. Figure 1.7 shows
fluorescence-labeled motor proteins that are moving on a plate covered
with myosin molecules in a so-called motility assay. Such an assay is used
to study the molecular mechanisms of muscle cells. Despite the high
noise level, the motion of the filaments is apparent. However, automatic
motion determination with such noisy image sequences is a demanding
task that requires sophisticated image sequence analysis techniques.

The next example is taken from oceanography. The small-scale pro-
cesses that take place in the vicinity of the ocean surface are very difficult
to measure because of undulation of the surface by waves. Moreover,
point measurements make it impossible to infer the 2-D structure of
the waves at the water surface. Figure 1.8 shows a space-time image
of short wind waves. The vertical coordinate is a spatial coordinate in
the wind direction and the horizontal coordinate the time. By a spe-
cial illumination technique based on the shape from shading paradigm
(Section 8.5.3), the along-wind slope of the waves has been made visible.
In such a spatiotemporal image, motion is directly visible by the incli-
nation of lines of constant gray scale. A horizontal line marks a static
object. The larger the angle to the horizontal axis, the faster the object
is moving. The image sequence gives a direct insight into the complex
nonlinear dynamics of wind waves. A fast moving large wave modulates
the motion of shorter waves. Sometimes the short waves move with
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Figure 1.8: A space-time image of short wind waves at a wind speed of a 2.5 and
b 7.5m/s. The vertical coordinate is the spatial coordinate in wind direction, the
horizontal coordinate the time.

the same speed (bound waves), but mostly they are significantly slower
showing large modulations in the phase speed and amplitude.

The last example of image sequences is on a much larger spatial and
temporal scale. Figure 1.9 shows the annual cycle of the tropospheric
column density of NO>. NO> is one of the most important trace gases for
the atmospheric ozone chemistry. The main sources for tropospheric
NO; are industry and traffic, forest and bush fires (biomass burning),
microbiological soil emissions, and lighting. Satellite imaging allows for
the first time the study of the regional distribution of NO; and the iden-
tification of the sources and their annual cycles.

The data have been computed from spectroscopic images obtained
from the GOME instrument of the ERS2 satellite. At each pixel of the
images a complete spectrum with 4000 channels in the ultraviolet and
visible range has been taken. The total atmospheric column density of
the NO, concentration can be determined by the characteristic absorp-
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Figure 1.9: Maps of tropospheric NO, column densities showing four three-
month averages from 1999 (courtesy of Mark Wenig, Institute for Environmental
Physics, University of Heidelberg).
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Figure 1.10: Industrial inspection tasks: a Optical character recognition. b Con-
nectors (courtesy of Martin von Brocke, Robert Bosch GmbH).

tion spectrum that is, however, superimposed by the absorption spectra
of other trace gases. Therefore, a complex nonlinear regression analy-
sis is required. Furthermore, the stratospheric column density must be
subtracted by suitable image processing algorithms.

The resulting maps of tropospheric NO» column densities in Fig. 1.9
show a lot of interesting detail. Most emissions are related to industri-
alized countries. They show a clear annual cycle in the Northern hemi-
sphere with a maximum in the winter.

1.2.4 Classification

Another important task is the classification of objects observed in im-
ages. The classical example of classification is the recognition of char-
acters (optical character recognition or short OCR). Figure 1.10a shows
a typical industrial OCR application, the recognition of a label on an in-
tegrated circuit. Object classification includes also the recognition of
different possible positioning of objects for correct handling by a robot.
In Fig. 1.10b, connectors are placed in random orientation on a conveyor
belt. For proper pick up and handling, whether the front or rear side of
the connector is seen must also be detected.

The classification of defects is another important application. Fig-
ure 1.11 shows a number of typical errors in the inspection of integrated
circuits: an incorrectly centered surface mounted resistor (Fig. 1.11a),
and broken or missing bond connections (Fig. 1.11b-f).

The application of classification is not restricted to industrial tasks.
Figure 1.12 shows some of the most distant galaxies ever imaged by
the Hubble telescope. The galaxies have to be separated into different
classes according to their shape and color and have to be distinguished
from other objects, e.g., stars.
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Figure 1.11: Errors in soldering and bonding of integrated circuits. Courtesy of
Florian Raisch, Robert Bosch GmbH).

Figure 1.12: Hubble deep space image: classification of distant galaxies
(http://hubblesite.org/).
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Figure 1.13: A hierarchy of digital image processing tasks from image formation
to image comprehension. The numbers by the boxes indicate the corresponding




< start menu

1.3 Hierarchy of Image Processing Operations 15

1.3 Hierarchy of Image Processing Operations

Image processing is not a one-step process. We are able to distinguish
between several steps which must be performed one after the other until
we can extract the data of interest from the observed scene. In this way
a hierarchical processing scheme is built up as sketched in Fig. 1.13. The
figure gives an overview of the different phases of image processing,
together with a summary outline of this book.

Image processing begins with the capture of an image with a suitable,
not necessarily optical, acquisition system. In a technical or scientific
application, we may choose to select an appropriate imaging system.
Furthermore, we can set up the illumination system, choose the best
wavelength range, and select other options to capture the object feature
of interest in the best way in an image (Chapter 6). 2-D and 3-D image
formation are discussed in Chapters 7 and 8, respectively. Once the
image is sensed, it must be brought into a form that can be treated with
digital computers. This process is called digitization and is discussed in
Chapter 9.

The first steps of digital processing may include a number of different
operations and are known as image preprocessing. If the sensor has non-
linear characteristics, these need to be corrected. Likewise, brightness
and contrast of the image may require improvement. Commonly, too, co-
ordinate transformations are needed to restore geometrical distortions
introduced during image formation. Radiometric and geometric correc-
tions are elementary pixel processing operations that are discussed in
Chapter 10.

A whole chain of processing steps is necessary to analyze and iden-
tify objects. First, adequate filtering procedures must be applied in order
to distinguish the objects of interest from other objects and the back-
ground. Essentially, from an image (or several images), one or more
feature images are extracted. The basic tools for this task are averaging
(Chapter 11), edge detection (Chapter 12), the analysis of simple neigh-
borhoods (Chapter 13) and complex patterns known in image process-
ing as texture (Chapter 15). An important feature of an object is also
its motion. Techniques to detect and determine motion are discussed in
Chapter 14.

Then the object has to be separated from the background. This means
that regions of constant features and discontinuities must be identified
by segmentation (Chapter 16). This can be an easy task if an object is
well distinguished from the background by some local features. This
is, however, not often the case. Then more sophisticated segmentation
techniques are required (Chapter 17). These techniques use various op-
timization strategies to minimize the deviation between the image data
and a given model function incorporating the knowledge about the ob-
jects in the image.
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The same mathematical approach can be used for other image process-
ing tasks. Known disturbances in the image, for instance caused by a de-
focused optics, motion blur, errors in the sensor, or errors in the trans-
mission of image signals, can be corrected (image restoration). Images
can be reconstructed from indirect imaging techniques such as tomog-
raphy that deliver no direct image (image reconstruction).

Now that we know the geometrical shape of the object, we can use
morphological operators to analyze and modify the shape of objects
(Chapter 18) or extract further information such as the mean gray value,
the area, perimeter, and other parameters for the form of the object
(Chapter 19). These parameters can be used to classify objects (classi-
fication, Chapter 20). Character recognition in printed and handwritten
text is an example of this task.

While it appears logical to divide a complex task such as image process-
ing into a succession of simple subtasks, it is not obvious that this strat-
egy works at all. Why? Let us discuss a simple example. We want to find
an object that differs in its gray value only slightly from the background
in a noisy image. In this case, we cannot simply take the gray value to
differentiate the object from the background.

Averaging of neighboring image points can reduce the noise level.
At the edge of the object, however, background and object points are
averaged, resulting in false mean values. If we knew the edge, averaging
could be stopped at the edge. But we can determine the edges only after
averaging because only then are the gray values of the object sufficiently
different from the background.

We may hope to escape this circular argument by an iterative ap-
proach. We just apply the averaging and make a first estimate of the
edges of the object. We then take this first estimate to refine the av-
eraging at the edges, recalculate the edges and so on. It remains to be
studied in detail, however, whether this iteration converges at all, and if
it does, whether the limit is correct.

In any case, the discussed example suggests that more difficult im-
age processing tasks require feedback. Advanced processing steps give
parameters back to preceding processing steps. Then the processing
is not linear along a chain but may iteratively loop back several times.
Figure 1.13 shows some possible feedbacks. The feedback may include
non-image processing steps.

If an image processing task cannot be solved with a given image,
we may decide to change the illumination, zoom closer to an object of
interest or to observe it under a more suitable view angle. This type of
approach is known as active vision. In the framework of an intelligent
system exploring its environment by its senses we may also speak of an
action-perception cycle.
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1.4 Image Processing and Computer Graphics

For some time now, image processing and computer graphics have been
treated as two different areas. Knowledge in both areas has increased
considerably and more complex problems can now be treated. Computer
graphics is striving to achieve photorealistic computer-generated images
of three-dimensional scenes, while image processing is trying to recon-
struct one from an image actually taken with a camera. In this sense,
image processing performs the inverse procedure to that of computer
graphics. In computer graphics we start with knowledge of the shape
and features of an object — at the bottom of Fig. 1.13 — and work up-
wards until we get a two-dimensional image. To handle image processing
or computer graphics, we basically have to work from the same knowl-
edge. We need to know the interaction between illumination and objects,
how a three-dimensional scene is projected onto an image plane, etc.

There are still quite a few differences between an image processing
and a graphics workstation. But we can envisage that, when the similari-
ties and interrelations between computer graphics and image processing
are better understood and the proper hardware is developed, we will see
some kind of general-purpose workstation in the future which can han-
dle computer graphics as well as image processing tasks. The advent
of multimedia, i.e., the integration of text, images, sound, and movies,
will further accelerate the unification of computer graphics and image
processing. The term “visual computing” has been coined in this context
[68].

1.5 Cross-disciplinary Nature of Image Processing

By its very nature, the science of image processing is cross-disciplinary
in several aspects. First, image processing incorporates concepts from
various sciences. Before we can process an image, we need to know
how the digital signal is related to the features of the imaged objects.
This includes various physical processes from the interaction of radia-
tion with matter to the geometry and radiometry of imaging. An imaging
sensor converts the incident irradiance in one or the other way into an
electric signal. Next, this signal is converted into digital numbers and
processed by a digital computer to extract the relevant data. In this chain
of processes (see also Fig. 1.13) many areas from physics, computer sci-
ence and mathematics are involved including among others, optics, solid
state physics, chip design, computer architecture, algebra, analysis, sta-
tistics, algorithm theory, graph theory, system theory, and numerical
mathematics. From an engineering point of view, contributions from
optical engineering, electrical engineering, photonics, and software engi-
neering are required.



< start menu

18 1 Applications and Tools

Image processing has a partial overlap with other disciplines. Image
processing tasks can partly be regarded as a measuring problem, which is
part of the science of metrology. Likewise, pattern recognition tasks are
incorporated in image processing in a similar way as in speech process-
ing. Other disciplines with similar connections to image processing are
the areas of neural networks, artificial intelligence, and visual perception.
Common to these areas is their strong link to biological sciences.

When we speak of computer vision, we mean a computer system that
performs the same task as a biological vision system to “discover from
images what is present in the world, and where it is” [134]. In contrast,
the term machine vision is used for a system that performs a vision task
such as checking the sizes and completeness of parts in a manufacturing
environment. For many years, a vision system has been regarded just
as a passive observer. As with biological vision systems, a computer
vision system can also actively explore its surroundings by, e. g., moving
around and adjusting its angle of view. This, we call active vision.

There are numerous special disciplines that for historical reasons
developed partly independently of the main stream in the past. One of
the most prominent disciplines is photogrammetry (measurements from
photographs; main applications: mapmaking and surveying). Other ar-
eas are remote sensing using aerial and satellite images, astronomy, and
medical imaging.

The second important aspect of the cross-disciplinary nature of im-
age processing is its widespread application. There is almost no field
in natural sciences or technical disciplines where image processing is
not applied. As we have seen from the examples in Section 1.2, it has
gained crucial importance in several application areas. The strong links
to so many application areas provide a fertile ground for further rapid
progress in image processing because of the constant inflow of tech-
niques and ideas from an ever-increasing host of application areas.

A final cautionary note: a cross-disciplinary approach is not just a
nice extension. It is a necessity. Lack of knowledge in either the appli-
cation area or image processing tools inevitably leads at least to sub-
optimal solutions and sometimes even to a complete failure.

1.6 Human and Computer Vision

We cannot think of image processing without considering the human vi-
sual system. This seems to be a trivial statement, but it has far-reaching
consequences. We observe and evaluate the images that we process with
our visual system. Without taking this elementary fact into considera-
tion, we may be much misled in the interpretation of images.

The first simple questions we should ask are:

o What intensity differences can we distinguish?
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Figure 1.14: Test images for distance and area estimation: a parallel lines with
up to 5 % difference in length; b circles with up to 10 % difference in radius; c the
vertical line appears longer, though it has the same length as the horizontal line;
d deception by perspective: the upper line (in the background) appears longer
than the lower line (in the foreground), though both are equally long.

What is the spatial resolution of our eye?
e How accurately can we estimate and compare distances and areas?
How do we sense colors?

By which features can we detect and distinguish objects?

It is obvious that a deeper knowledge would be of immense help for
computer vision. Here is not the place to give an overview of the human
visual system. The intention is rather to make us aware of the elementary
relations between human and computer vision. We will discuss diverse
properties of the human visual system in the appropriate chapters. Here,
we will make only some introductory remarks. A detailed comparison of
human and computer vision can be found in Levine [123]. An excellent
up-to-date reference to human vision is also the monograph by Wandell
[212].

The reader can perform some experiments by himself. Figure 1.14
shows several test images concerning the question of estimation of dis-
tance and area. He will have no problem in seeing even small changes
in the length of the parallel lines in Fig. 1.14a. A similar area compar-
ison with circles is considerably more difficult (Fig. 1.14b). The other
examples show how the estimate is biased by the context of the im-
age. Such phenomena are known as optical illusions. Two examples of
estimates for length are shown in Fig. 1.14c, d. These examples show
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Figure 1.15: Recognition of three-dimensional objects: three different represen-
tations of a cube with identical edges in the image plane.

a b

Figure 1.16: a Recognition of boundaries between textures; b “interpolation” of
object boundaries.

that the human visual system interprets the context in its estimate of
length. Consequently, we should be very careful in our visual estimates
of lengths and areas in images.

The second topic is that of the recognition of objects in images. Al-
though Fig. 1.15 contains only a few lines and is a planar image not
containing any direct information on depth, we immediately recognize
a cube in the right and left image and its orientation in space. The only
clues from which we can draw this conclusion are the hidden lines and
our knowledge about the shape of a cube. The image in the middle,
which also shows the hidden lines, is ambivalent. With some training,
we can switch between the two possible orientations in space.

Figure 1.16 shows a remarkable feature of the human visual system.
With ease we see sharp boundaries between the different textures in
Fig. 1.16a and immediately recognize the figure 5. In Fig. 1.16b we iden-
tify a white equilateral triangle, although parts of the bounding lines do
not exist.

From these few observations, we can conclude that the human vi-
sual system is extremely powerful in recognizing objects, but is less well
suited for accurate measurements of gray values, distances, and areas.

In comparison, the power of computer vision systems is marginal
and should make us feel humble. A digital image processing system can
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only perform elementary or well-defined fixed image processing tasks
such as real-time quality control in industrial production. A computer
vision system has also succeeded in steering a car at high speed on a
highway, even with changing lanes. However, we are still worlds away
from a universal digital image processing system which is capable of
“understanding” images as human beings do and of reacting intelligently
and flexibly in real time.

Another connection between human and computer vision is worth
noting. Important developments in computer vision have been made
through progress in understanding the human visual system. We will
encounter several examples in this book: the pyramid as an efficient
data structure for image processing (Chapter 5), the concept of local
orientation (Chapter 13), and motion determination by filter techniques
(Chapter 14).

1.7 Components of an Image Processing System

This section briefly outlines the capabilities of modern image processing
systems. A general purpose image acquisition and processing system
typically consists of four essential components:

1. An image acquisition system. In the simplest case, this could be a
CCD camera, a flatbed scanner, or a video recorder.

2. A device known as a frame grabber to convert the electrical signal
(normally an analog video signal) of the image acquisition system
into a digital image that can be stored.

3. A personal computer or a workstation that provides the processing
power.

4. Image processing software that provides the tools to manipulate and
analyze the images.

1.7.1 Image Sensors

Digital processing requires images to be obtained in the form of electrical
signals. These signals can be digitized into sequences of numbers which
then can be processed by a computer. There are many ways to convert
images into digital numbers. Here, we will focus on video technology, as
it is the most common and affordable approach.

The milestone in image sensing technology was the invention of semi-
conductor photodetector arrays. There are many types of such sensors,
the most common being the charge coupled device or CCD. Such a sensor
consists of a large number of photosensitive elements. During the accu-
mulation phase, each element collects electrical charges, which are gen-
erated by absorbed photons. Thus the collected charge is proportional



< start menu
22 1 Applications and Tools

Figure 1.17: Modern semiconductor cameras: a Complete CMOS camera on
a chip with digital and analog output (image courtesy of K. Meier, Kirchhoff
Institute for Physics, University of Heidelberg), [128]. b High-end digital 12-bit
CCD camera, Pixelfly (image courtesy of PCO GmbH, Germany).

to the illumination. In the read-out phase, these charges are sequentially
transported across the chip from sensor to sensor and finally converted
to an electric voltage.

For quite some time, CMOS image sensors have been available. But
only recently have these devices attracted significant attention because
the image quality, especially the uniformity of the sensitivities of the
individual sensor elements, now approaches the quality of CCD image
sensors. CMOS imagers still do not reach up to the standards of CCD
imagers in some features, especially at low illumination levels (higher
dark current). They have, however, a number of significant advantages
over CCD imagers. They consume significantly less power, subareas can
be accessed quickly, and they can be added to circuits for image pre-
processing and signal conversion. Indeed, it is possible to put a whole
camera on a single chip (Fig. 1.17a). Last but not least, CMOS sensors can
be manufactured more cheaply and thus open new application areas.

Generally, semiconductor imaging sensors are versatile and powerful
devices:

e Precise and stable geometry. The individual sensor elements are pre-
cisely located on a regular grid. Geometric distortion is virtually ab-
sent. Moreover, the sensor is thermally stable in size due to the low
linear thermal expansion coefficient of silicon (2 - 10~%/K). These fea-
tures allow precise size and position measurements.

e Small and rugged. The sensors are small and insensitive to external
influences such as magnetic fields and vibrations.

e High sensitivity. The quantum efficiency, i.e., the fraction of elemen-
tary charges generated per photon, can be close to one (>R2 and
>R1). Even standard imaging sensors, which are operated at room
temperature, have a low noise level of only 10-100 electrons. Thus
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they show an excellent sensitivity. Cooled imaging sensors can be
used with exposure times of hours without showing a significant ther-
mal signal.

However, commercial CCDs at room temperature cannot be used at
low light levels because of the thermally generated electrons. But
if CCD devices are cooled down to low temperatures, they can be
exposed for hours. Such devices are commonly used in astronomy
and are about one hundred times more sensitive than photographic
material.

o Wide variety. Imaging sensors are available in a wide variety of reso-
lutions and frame rates (> R2 and > R1). The largest built CCD sen-
sor as of 2001 originates from Philips. In a modular design with
1k x 1k sensor blocks, they built a 7k x 9k sensor with 12 x 12 um
pixels [70]. Among the fastest high-resolution imagers available is
the 1280 x 1024 active-pixel CMOS sensor from Photobit with a peak
frame rate of 500 Hz (660 MB/s data rate) [154].

e Imaging beyond the visible. Semiconductor imagers are not limited
to the visible range of the electromagnetic spectrum. Standard sili-
con imagers can be made sensitive far beyond the visible wavelength
range (400-700nm) from 200 nm in the ultraviolet to 1100 nm in the
near infrared. In the infrared range beyond 1100 nm, other semicon-
ductors such an GaAs, InSb, HgCdTe are used (> R3) since silicon be-
comes transparent. Towards shorter wavelengths, specially designed
silicon imagers can be made sensitive well into the x-ray wavelength
region.

1.7.2 Image Acquisition and Display

A frame grabber converts the electrical signal from the camera into a
digital image that can be processed by a computer. Image display and
processing nowadays no longer require any special hardware. With the
advent of graphical user interfaces, image display has become an integral
part of a personal computer or workstation. Besides the display of gray-
scale images with up to 256 shades (8 bit), also true-color images with
up to 16.7 million colors (3 channels with 8 bits each), can be displayed
on inexpensive PC graphic display systems with a resolution of up to
1600 x 1200 pixels.

Consequently, a modern frame grabber no longer requires its own
image display unit. It only needs circuits to digitize the electrical signal
from the imaging sensor and to store the image in the memory of the
computer. The direct transfer of image data from a frame grabber to
the memory (RAM) of a microcomputer has become possible since 1995
with the introduction of fast peripheral bus systems such as the PCI
bus. This 32-bit wide and 33 Mhz fast bus has a peak transfer rate of
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132 MB/s. Depending on the PCI bus controller on the frame grabber
and the chipset on the motherboard of the computer, sustained transfer
rates between 15 and 80 MB/s have been reported. This is sufficient
to transfer image sequences in real time to the main memory, even for
color images and fast frame rate images. The second generation 64-bit,
66 MHz PCI bus quadruples the data transfer rates to a peak transfer
rate of 512 MB/s. Digital cameras that transfer image data directly to
the PC via standardized digital interfaces such as Firewire (IEEE 1394),
Camera link, or even fast Ethernet will further simplify the image input
to computers.

The transfer rates to standard hard disks, however, are considerably
lower. Sustained transfer rates are typically lower than 10 MB/s. This is
inadequate for uncompressed real-time image sequence storage to disk.
Real-time transfer of image data with sustained data rates between 10
and 30 MB/s is, however, possible with RAID arrays.

1.7.3 Computer Hardware for Fast Image Processing

The tremendous progress of computer technology in the past 20 years
has brought digital image processing to the desk of every scientist and
engineer. For a general-purpose computer to be useful for image process-
ing, four key demands must be met: high-resolution image display, suf-
ficient memory transfer bandwidth, sufficient storage space, and suffi-
cient computing power. In all four areas, a critical level of performance
has been reached that makes it possible to process images on standard
hardware. In the near future, it can be expected that general-purpose
computers can handle volumetric images and/or image sequences with-
out difficulties. In the following, we will briefly outline these key areas.

General-purpose computers now include sufficient random access
memory (RAM) to store multiple images. A 32-bit computer can ad-
dress up to 4 GB of memory. This is sufficient to handle complex image
processing tasks even with large images. Nowadays, also 64-bit com-
puter systems are available. They provide enough RAM even for de-
manding applications with image sequences and volumetric images.

While in the early days of personal computers hard disks had a ca-
pacity of just 5-10 MB, nowadays disk systems with more than ten thou-
sand times more storage capacity (40-200GB) are standard. Thus, a
large number of images can be stored on a disk, which is an important
requirement for scientific image processing. For permanent data stor-
age and PC exchange, the DVD is playing an important role as a cheap
and versatile storage medium. One DVD can hold almost 5 GB of image
data that can be read independent of the operating system on MS Win-
dows, Macintosh, and UNIX platforms. Cheap DVD writers allow anyone
to produce DVDs.
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Within the short history of microprocessors and personal computers,
computing power has increased tremendously. From 1978 to 2001 the
clock rate has increased from 4.7 MHz to 1.6 GHz by a factor of 300. The
speed of elementary operations such as floating-point addition and mul-
tiplication has increased even more because on modern CPUs these oper-
ations have now a throughput of only a few clocks instead of about 100
on early processors. Thus, in less than 25 years, the speed of floating-
point computations on a single microprocessor increased more than a
factor of 10 000.

Image processing could benefit from this development only partly.
On modern 32-bit processors it became increasingly inefficient to trans-
fer and process 8-bit and 16-bit image data. This changed only in 1997
with the integration of multimedia techniques into PCs and workstations.
The basic idea of fast image data processing is very simple. It makes use
of the 64-bit data paths in modern processors for quick transfer and
processing of multiple image data in parallel. This approach to parallel
computing is a form of the single instruction multiple data (SIMD) con-
cept. In 64-bit machines, eight 8-bit, four 16-bit or two 32-bit data can
be processed together.

Sun was the first to integrate the SIMD concept into a general-purpose
computer architecture with the visual instruction set (VIS) on the Ultra-
Sparc architecture [141]. In January 1997 Intel introduced the Multi-
media Instruction Set Extension (MMX) for the next generation of Pen-
tium processors (P55C). The SIMD concept was quickly adopted by other
processor manufacturers. Motorola, for instance, developed the AltiVec
instruction set. It has also become an integral part of new 64-bit architec-
tures such as in IA-64 architecture from Intel and the x86-64 architecture
from AMD.

Thus, it is evident that SIMD-processing of image data has become a
standard part of future microprocessor architectures. More and more
image processing tasks can be processed in real time on standard mi-
croprocessors without the need for any expensive and awkward special
hardware. However, significant progress for compilers is still required
before SIMD techniques can be used by the general programmer. Today,
the user either depends on libraries that are optimized by the hardware
manufacturers for specific hardware platforms or he is forced to dive
into the details of hardware architectures for optimized programming.

1.7.4 Software and Algorithms

The rapid progress of computer hardware may distract us from the im-
portance of software and the mathematical foundation of the basic con-
cepts for image processing. In the early days, image processing may
have been characterized more as an “art” than as a science. It was like
tapping in the dark, empirically searching for a solution. Once an algo-
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rithm worked for a certain task, you could be sure that it would not work
with other images and you would not even know why. Fortunately, this
is gradually changing. Image processing is about to mature to a well-
developed science. The deeper understanding has also led to a more re-
alistic assessment of today’s capabilities of image processing and analy-
sis, which in many respects is still worlds away from the capability of
human vision.

It is a widespread misconception that a better mathematical founda-
tion for image processing is of interest only to the theoreticians and has
no real consequences for the applications. The contrary is true. The ad-
vantages are tremendous. In the first place, mathematical analysis allows
a distinction between image processing problems that can and those
that cannot be solved. This is already very helpful. Image processing
algorithms become predictable and accurate, and in some cases optimal
results are known. New mathematical methods often result in novel ap-
proaches that can solve previously intractable problems or that are much
faster or more accurate than previous approaches. Often the speed up
that can be gained by a fast algorithm is considerable. In some cases it
can reach up to several orders of magnitude. Thus fast algorithms make
many image processing techniques applicable and reduce the hardware
costs considerably.

1.8 Exercises

Problem 1.1: Image sequence viewer

Interactive viewing and inspection of all image sequences and volumetric images
used throughout this textbook (dip6ex01.01).

Problem 1.2: *Image processing tasks

Figure 1.13 contains a systematic summary of the hierarchy of image process-

ing operations from illumination to the analysis of objects extracted from the

images taken. Investigate, which of the operations in this diagram are required

for the following tasks.

1. Measurement of the size distribution of color pigments (Section 1.2.1, Fig. 1.1¢)

2. Detection of a brain tumor in a volumetric magnetic resonance tomography
image (Section 1.2.2, Fig. 1.5) and measurement of its size and shape

3. Investigation of the diurnal cycle of the growth of plant leaves (Section 1.2.3,
Fig. 1.6)

4. Character recognition (OCR): Reading of the label on an integrated circuit
(Section 1.2.4, Fig. 1.10a)

5. Partitioning of galaxies according to their form and spectrum into different
classes (Section 1.2.4, Fig. 1.12)
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Problem 1.3: *Interdisziplinary nature of image processing

1.

Which other sciences contribute methods that are used in digital image process-
ing?

. Which areas of science and technology use digital image processing tech-

niques?

Problem 1.4: **Comparison of computer vision and biological vision

In Section 1.7 we discuss the components of a digital image processing system.
Try to identify the corresponding components of a biological vision system.
Is there a one-to-one correspondence or do you see fundamental differences?
Are there biological components that are not yet realized in computer vision
systems and vice versa?

Problem 1.5: * Amounts of data in digital image processing

In digital image processing significantly larger amounts of data are required to
be processed as this is normally the case with the analysis of time series. In
order to get a feeling of the amount of data, estimate the amount of data that
is to be processed in the following typical real-world applications.

1.

Water wave image sequences. In a wind/wave facility image sequences are
taken from wind waves at the surface of the water (Section 1.2.3, Fig. 1.8). Two
camera systems are in use. Each of them takes image sequences with a spatial
resolution of 640 x 480 pixel, 200 frames/s and 8 bit data resolution. A
sequence of measurements runs over six hours. Every 15 minutes a sequence
of 5 minutes is taken simultaneously with both cameras. How large is the data
rate for real-time recording? How much data needs to be stored for the whole
six hour run?

. Industrial inspection system for laser welding. The welding of parts in an

industrial production line is inspected by a high-speed camera system. The
camera takes 256 x 256 large images with a rate of 1000 frames/s and a
resolution of 16 bit per pixel for one second in order to control the welding
of one part. One thousand parts are inspected per hour. The production line
runs around the clock and includes six inspection places in total. Per hour
1000 parts are inspected. The line runs around the clock and includes six
inspection places. Which amount of image data must be processed per day
and year, respectively?

. Driver assistance system. A driver assistance system detects the road lane

and traffic signs with a camera system, which has a spatial resolution of
640 x 480 pixel and takes 25 frames/s. The camera delivers color images
with the three color channels red, green, and blue. Which rate of image data
(MB/s) must be processed in real time?

. Medical volumetric image sequences. A fast computer tomographic sys-

tems for dynamic medical diagnosis takes volumetric images with a spatial
resolution of 256 x 256 x 256 and a repetition rate of 10 frames/s. The data
are 16 bit deep. Which rate of data (MB/s) must be processed?
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1.9 Further Readings

In this section, we give some hints on further readings in image processing.

Elementary textbooks. “The Image Processing Handbook” by Russ [175]
is an excellent elementary introduction to image processing with a wealth of
application examples and illustrations. Another excellent elementary textbook
is Nalwa [146]. He gives — as the title indicates — a guided tour of computer
vision.

Advanced textbooks. Still worthwhile to read is the classical, now almost
twenty year old textbook “Digital Picture Processing” from Rosenfeld and Kak
[174]. Another classical, but now somewhat outdated textbook is Jain [99]. From
other classical textbooks new editions were published recently: Pratt [159]and
Gonzalez and Woods [64]. The textbook of van der Heijden [207] discusses
image-based measurements including parameter estimation and object recog-
nition.

Textbooks covering special topics. Because of the cross-disciplinary na-
ture of image processing (Section 1.5), image processing can be treated from
quite different points of view. A collection of monographs is listed here that
focus on one or the other aspect of image processing:

Topic References

Image sensors Holst [79], Howell [84],
Janesick [101]

Haacke et al. [69], Liang
and Lauterbur [124],
Mitchell and Cohen [140]
Faugeras [44], Faugeras
and Luong [45]

MR imaging

Geometrical aspects of computer vision

Perception Mallot [131], Wandell [212]

Machine vision Jain et al. [100], Demant
et al. [33]

Robot vision and computer vision Horn [83], Shapiro and

Stockman [188], Forsyth
and Ponce [56]
Granlund and Knutsson
[66], Lim [126]

Signal processing

Satellite imaging and remote sensing
Micro structure analysis

Industrial image processing
Object classification and pattern recognition

High-level vision

Richards and Jia [169],
Schott [183]

Ohser and Miicklich [149]
Demant et al. [33]

Duda et al. [40], Schiirmann
[184], Bishop [11], Schol-
Ikopf and Smola [182]
Ullman [204]
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Human vision and computer vision. This topic is discussed in detail by
Levine [123]. An excellent and up-to-date reference is also the monograph from
Wandell [212].

Collection of articles. An excellent overview of image processing with di-
rect access to some key original articles is given by the following collections of
articles: “Digital Image Processing” by Chelappa [23], “Readings in Computer
Vision: Issues, Problems, Principles, and Paradigms” by Fischler and Firschein
[49], and “Computer Vision: Principles and Advances and Applications” by Kas-
turi and Jain [105, 106].

Handbooks. The “Practical Handbook on Image Processing for Scientific Ap-
plications” by Jahne [91] provides a task-oriented approach with many practical
procedures and tips. A state-of-the-art survey of computer vision is given by the
three-volume “Handbook of Computer Vision and Applications by Jahne et al.
[96]. Algorithms for image processing and computer vision are provided by
Voss and Stile [211], Pitas [156], Parker [152], Umbaugh [205], and Wilson and
Ritter [219].
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2 Image Representation

2.1 Introduction

This chapter centers around the question of how to represent the infor-
mation contained in images. Together with the next two chapters it lays
the mathematical foundations for low-level image processing. Two key
points are emphasized in this chapter.

First, the information contained in images can be represented in en-
tirely different ways. The most important are the spatial representation
(Section 2.2) and wave number representation (Section 2.3). These repre-
sentations just look at spatial data from different points of view. Since
the various representations are complete and equivalent, they can be
converted into each other. The conversion between the spatial and wave
number representation is the well-known Fourier transform. This trans-
form is an example of a more general class of operations, the unitary
transforms (Section 2.4).

Second, we discuss how these representations can be handled with
digital computers. How are images represented by arrays of digital num-
bers in an adequate way? How are these data handled efficiently? Can
fast algorithms be devised to convert one representation into another?
A key example is the fast Fourier transform, discussed in Section 2.5.

2.2 Spatial Representation of Digital Images

2.2.1 Pixel and Voxel

Images constitute a spatial distribution of the irradiance at a plane.
Mathematically speaking, the spatial irradiance distribution can be de-
scribed as a continuous function of two spatial variables:

E(x1,x2) = E(x). (2.1)

Computers cannot handle continuous images but only arrays of digi-
tal numbers. Thus it is required to represent images as two-dimensional
arrays of points. A point on the 2-D grid is called a pixel or pel. Both
words are abbreviations of the word picture element. A pixel represents
the irradiance at the corresponding grid position. In the simplest case,
the pixels are located on a rectangular grid. The position of the pixel
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Figure 2.1: Representation of digital images by arrays of discrete points on a
rectangular grid: a 2-D image, b 3-D image.

is given in the common notation for matrices. The first index, m, de-
notes the position of the row, the second, n, the position of the column
(Fig. 2.1a). If the digital image contains M x N pixels, i.e., is represented
by an M x N matrix, the index n runs from 0 to N — 1, and the index m
from 0 to M — 1. M gives the number of rows, N the number of columns.
In accordance with the matrix notation, the vertical axis (y axis) runs
from top to bottom and not vice versa as it is common in graphs. The
horizontal axis (x axis) runs as usual from left to right.

Each pixel represents not just a point in the image but rather a rectan-
gular region, the elementary cell of the grid. The value associated with
the pixel must represent the average irradiance in the corresponding cell
in an appropriate way. Figure 2.2 shows one and the same image repre-
sented with a different number of pixels as indicated in the legend. With
large pixel sizes (Fig. 2.2a, b), not only is the spatial resolution poor, but
the gray value discontinuities at pixel edges appear as disturbing arti-
facts distracting us from the content of the image. As the pixels become
smaller, the effect becomes less pronounced up to the point where we
get the impression of a spatially continuous image. This happens when
the pixels become smaller than the spatial resolution of our visual sys-
tem. You can convince yourself of this relation by observing Fig. 2.2
from different distances.

How many pixels are sufficient? There is no general answer to this
question. For visual observation of a digital image, the pixel size should
be smaller than the spatial resolution of the visual system from a nomi-
nal observer distance. For a given task the pixel size should be smaller
than the finest scales of the objects that we want to study. We generally
find, however, that it is the available sensor technology (see Section 1.7.1)
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a b

Figure 2.2: Digital images consist of pixels. On a square grid, each pixel rep-
resents a square region of the image. The figure shows the same image with a
3x4,b12x16, c48 x 64, and d 192 x 256 pixels. If the image contains suffi-
cient pixels, it appears to be continuous.

that limits the number of pixels rather than the demands from the appli-
cations. Even a high-resolution sensor array with 1000 x 1000 elements
has a relative spatial resolution of only 10~3. This is a rather poor resolu-
tion compared to other measurements such as those of length, electrical
voltage or frequency, which can be performed with relative resolutions
of far beyond 10~6. However, these techniques provide only a measure-
ment at a single point, while a 1000 x 1000 image contains one million
points. Thus we obtain an insight into the spatial variations of a signal.
If we take image sequences, also the temporal changes and, thus, the
kinematics and dynamics of the studied object become apparent. In this
way, images open up a whole new world of information.

A rectangular grid is only the simplest geometry for a digital image.
Other geometrical arrangements of the pixels and geometric forms of
the elementary cells are possible. Finding the possible configurations is
the 2-D analogue of the classification of crystal structure in 3-D space,
a subject familiar to solid state physicists, mineralogists, and chemists.
Crystals show periodic 3-D patterns of the arrangements of their atoms,
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Figure 2.3: The three possible regular grids in 2-D: a triangular grid, b square
grid, ¢ hexagonal grid.
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Figure 2.4: Neighborhoods on a rectangular grid: a 4-neighborhood and b 8-
neighborhood. ¢ The black region counts as one object (connected region) in an
8-neighborhood but as two objects in a 4-neighborhood.

ions, or molecules which can be classified by their symmetries and the
geometry of the elementary cell. In 2-D, classification of digital grids is
much simpler than in 3-D. If we consider only regular polygons, we have
only three possibilities: triangles, squares, and hexagons (Fig. 2.3).

The 3-D spaces (and even higher-dimensional spaces) are also of in-
terest in image processing. In three-dimensional images a pixel turns
into a voxel, an abbreviation of volume element. On a rectangular grid,
each voxel represents the mean gray value of a cuboid. The position of
a voxel is given by three indices. The first, k, denotes the depth, m the
row, and n the column (Fig. 2.1b). A Cartesian grid, i. e., hypercubic pixel,
is the most general solution for digital data since it is the only geometry
that can easily be extended to arbitrary dimensions.

2.2.2 Neighborhood Relations

An important property of discrete images is their neighborhood relations
since they define what we will regard as a connected region and therefore
as a digital object. A rectangular grid in two dimensions shows the
unfortunate fact, that there are two possible ways to define neighboring
pixels (Fig. 2.4a, b). We can regard pixels as neighbors either when they
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Figure 2.5: The three types of neighborhoods on a 3-D cubic grid. a 6-
neighborhood: voxels with joint faces; b 18-neighborhood: voxels with joint
edges; ¢ 26-neighborhood: voxels with joint corners.

have a joint edge or when they have at least one joint corner. Thus a
pixel has four or eight neighbors and we speak of a 4-neighborhood or
an 8-neighborhood.

Both types of neighborhood are needed for a proper definition of
objects as connected regions. A region or an object is called connected
when we can reach any pixel in the region by walking from one neighbor-
ing pixel to the next. The black object shown in Fig. 2.4c is one object in
the 8-neighborhood, but constitutes two objects in the 4-neighborhood.
The white background, however, shows the same property. Thus we
have either two connected regions in the 8-neighorhood crossing each
other or two separated regions in the 4-neighborhood. This inconsis-
tency can be overcome if we declare the objects as 4-neighboring and
the background as 8-neighboring, or vice versa.

These complications occur not only with a rectangular grid. With a
triangular grid we can define a 3-neighborhood and a 12-neighborhood
where the neighbors have either a common edge or a common corner,
respectively (Fig. 2.3a). On a hexagonal grid, however, we can only define
a 6-neighborhood because pixels which have a joint corner, but no joint
edge, do not exist. Neighboring pixels always have one joint edge and
two joint corners. Despite this advantage, hexagonal grids are hardly
used in image processing, as the imaging sensors generate pixels on
a rectangular grid. The photosensors on the retina in the human eye,
however, have a more hexagonal shape [212].

In three dimensions, the neighborhood relations are more complex.
Now, there are three ways to define a neighbor: voxels with joint faces,
joint edges, and joint corners. These definitions result in a 6-neighbor-
hood, an 18-neighborhood, and a 26-neighborhood, respectively (Fig. 2.5).
Again, we are forced to define two different neighborhoods for objects
and the background in order to achieve a consistent definition of con-
nected regions. The objects and background must be a 6-neighborhood
and a 26-neighborhood, respectively, or vice versa.
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2.2.3 Discrete Geometry

The discrete nature of digital images makes it necessary to redefine el-
ementary geometrical properties such as distance, slope of a line, and
coordinate transforms such as translation, rotation, and scaling. These
quantities are required for the definition and measurement of geometric
parameters of object in digital images.

In order to discuss the discrete geometry properly, we introduce the
grid vector that represents the position of the pixel. The following dis-
cussion is restricted to rectangular grids. The grid vector is defined in
2-D, 3-D, and 4-D spatiotemporal images as

nAX nAx
nAx mAy

Fmn = mAy |’ Yimn=| MAY |, Yrimn = IAz . (2.2)
Az kAL

To measure distances, it is still possible to transfer the Euclidian dis-
tance from continuous space to a discrete grid with the definition

do(r,r) = Ir =7l = [(n=n)2ax? + (m—m)2ay?]"". @23)

Equivalent definitions can be given for higher dimensions. In digital
images two other metrics have often been used. The city block distance

dyr,v')=n-n'| + |lm-m'| (2.4)

gives the length of a path, if we can only walk in horizontal and verti-
cal directions (4-neighborhood). In contrast, the chess board distance is
defined as the maximum of the horizontal and vertical distance

dc(r,r’") =max(|ln —n'|,/m —-m']). (2.5)

For practical applications, only the Euclidian distance is relevant. It is
the only metric on digital images that preserves the isotropy of the con-
tinuous space. With the city block distance, for example, distances in the
direction of the diagonals are longer than the Euclidean distance. The
curve with equal distances to a point is not a circle but a diamond-shape
curve, a square tilted by 45°.
Translation on a discrete grid is only defined in multiples of the pixel
or voxel distances
Yoo = Vmn + tw o, (2.6)

i.e., by addition of a grid vector &, »'.
Likewise, scaling is possible only for integer multiples of the scaling
factor by taking every gqth pixel on every pth line. Since this discrete
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Figure 2.6: A discrete line is only well defined in the directions of axes and di-
agonals. In all other directions, a line appears as a staircase-like jagged pixel
sequence.

scaling operation subsamples the grid, it remains to be seen whether
the scaled version of the image is still a valid representation.

Rotation on a discrete grid is not possible except for some trivial
angles. The condition is that all points of the rotated grid coincide with
the grid points. On a rectangular grid, only rotations by multiples of 180°
are possible, on a square grid by multiples of 90°, and on a hexagonal
grid by multiples of 60°.

Generally, the correct representation even of simple geometric ob-
jects such as lines and circles is not clear. Lines are well-defined only for
angles with values of multiples of 45°, whereas for all other directions
they appear as jagged, staircase-like sequences of pixels (Fig. 2.6).

All these limitations of digital geometry cause errors in the position,
size, and orientation of objects. It is necessary to investigate the conse-
quences of these errors for subsequent processing carefully (Chapter 9).

2.2.4 Quantization

For use with a computer, the measured irradiance at the image plane
must be mapped onto a limited number Q of discrete gray values. This
process is called gquantization. The number of required quantization
levels in image processing can be discussed with respect to two criteria.

First, we may argue that no gray value steps should be recognized by
our visual system, just as we do not see the individual pixels in digital
images. Figure 2.7 shows images quantized with 2 to 16 levels of gray
values. It can be seen clearly that a low number of gray values leads to
false edges and makes it very difficult to recognize objects that show
slow spatial variation in gray values. In printed images, 16 levels of gray
values seem to be sufficient, but on a monitor we would still be able to
see the gray value steps.

Generally, image data are quantized into 256 gray values. Then each
pixel occupies 8 bits or one byte. This bit size is well adapted to the
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Figure 2.7: Illustration of quantization. The same image is shown with different
quantization levels: a 16, b 8, c 4, d 2. Too few quantization levels produce false
edges and make features with low contrast partly or totally disappear.

architecture of standard computers that can address memory bytewise.
Furthermore, the resolution is good enough to give us the illusion of a
continuous change in the gray values, since the relative intensity resolu-
tion of our visual system is no better than about 2 %.

The other criterion is related to the imaging task. For a simple ap-
plication in machine vision, where homogeneously illuminated objects
must be detected and measured, only two quantization levels, i.e., a bi-
nary image, may be sufficient. Other applications such as imaging spec-
troscopy or medical diagnosis with x-ray images require the resolution
of faint changes in intensity. Then the standard 8-bit resolution would
be too coarse.

2.2.5 Signed Representation of Images
Normally we think of “brightness” (irradiance or radiance) as a positive quantity.

Consequently, it appears natural to represent it by unsigned numbers ranging
in an 8-bit representation, for example, from 0 to 255. This representation
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a b

Figure 2.8: The context determines how “bright” we perceive an object to be.
Both squares have the same brightness, but the square on the dark background
appears brighter than the square on the light background. The two squares only
appear equally bright if they touch each other.

causes problems, however, as soon as we perform arithmetic operations with
images. Subtracting two images is a simple example that can produce negative
numbers. Since negative gray values cannot be represented, they wrap around
and appear as large positive values. The number —1, for example, results in the
positive value 255 given that —1 modulo 256 = 255. Thus we are confronted
with the problem of two different representations of gray values, as unsigned
and signed 8-bit numbers. Correspondingly, we must have several versions of
each algorithm, one for unsigned gray values, one for signed values, and others
for mixed cases.

One solution to this problem is to handle gray values always as signed num-
bers. In an 8-bit representation, we can convert unsigned numbers into signed
numbers by subtracting 128:

q = (q—-128) mod 256, 0 <gq < 256. (2.7)

Then the mean gray value intensity of 128 becomes the gray value zero and gray
values lower than this mean value become negative. Essentially, we regard gray
values in this representation as a deviation from a mean value.

This operation converts unsigned gray values to signed gray values which can
be stored and processed as such. Only for display must we convert the gray
values again to unsigned values by the inverse point operation

qa=(q +128) mod 256, —128 <q’ <128, (2.8)

which is the same operation as in Eq. (2.7) since all calculations are performed
modulo 256.

2.2.6 Luminance Perception of the Human Visual System

With respect to quantization, it is important to know how the human
visual system perceives the levels and what luminance differences can
be distinguished. Figure 2.8 demonstrates that the small rectangle with
a medium luminance appears brighter against the dark background than
against the light one, though its absolute luminance is the same. This
deception only disappears when the two areas become adjacent.
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Figure 2.9: A high-contrast scene captured by a CCD camera with a linear con-
trast and a a small and b a large aperture.

The human visual system shows rather a logarithmic than a linear re-
sponse. This means that we perceive relative and not absolute luminance
differences equally well. In a wide range of luminance values, we can re-
solve relative differences of about 2%. This threshold value depends on
a number of factors, especially the spatial frequency (wavelength) of the
pattern used for the experiment. At a certain wavelength the luminance
resolution is optimal.

The characteristics of the human visual system discussed above are
quite different from those of a machine vision system. Typically only
256 gray values are resolved. Thus a digitized image has much lower
dynamics than the human visual system. This is the reason why the
quality of a digitized image, especially of a scene with high luminance
contrast, appears inferior to us compared to what we see directly. In a
digital image taken from such a scene with a linear image sensor, either
the bright parts are overexposed or the dark parts are underexposed.
This is demonstrated by the high-contrast scene in Fig. 2.9.

Although the relative resolution is far better than 2% in the bright
parts of the image, it is poor in the dark parts. At a gray value of 10, the
luminance resolution is only 10%.

One solution for coping with large dynamics in scenes is used in video
cameras, which generally convert the irradiance E not linearly, but with
an exponential law into the gray value g:

g=E. (2.9)

The exponent y is denoted the gamma value. Typically, y has a value
of 0.4. With this exponential conversion, the logarithmic characteristic
of the human visual system may be approximated. The contrast range
is significantly enhanced. If we presume a minimum relative luminance
resolution of 10% and an 8 bit gray scale range, we get contrast ranges
of 25 and 316 with y = 1 and y = 0.4, respectively.
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Figure 2.10: An image can be thought to be composed of basis images in which
only one pixel is unequal to zero.

For many scientific applications, however, it is essential that a linear
relation is maintained between the radiance of the observed object and
the gray value in the digital image. Thus the gamma value must be set
to one for these applications.

2.3 Wave Number Space and Fourier Transform

2.3.1 Vector Spaces

In Section 2.2, the discussion centered around the spatial representation
of digital images. Without mentioning it explicitly, we thought of an
image as composed of individual pixels (Fig. 2.10). Thus we can compose
each image with basis images where just one pixel has a value of one
while all other pixels are zero. We denote such a basis image with a one
at row m, column n by

1 m=m'An=n
mnpL M = 2.10
Pmm {0 otherwise. (2.10)

Any arbitrary scalar image can then be composed from the basis images
in Eq. (2.10) by
M-1N-1

G=> D> gmn™"P, (2.11)
m=0n=0
where g, » denotes the gray value at the position (i, n).
It is easy to convince ourselves that the basis images ""P form an
orthonormal base. To that end we require an inner product (also known
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as scalar product) which can be defined similarly to the scalar product
for vectors. The inner product of two images G and H is defined as

M-1N-1
(GIH) = > > gmnhmn, (2.12)

m=0n=0

where the notation for the inner product from quantum mechanics is
used in order to distinguish it from matrix multiplication, which is de-
noted by GH.

From Eq. (2.12), we can immediately derive the orthonormality rela-
tion for the basis images ™" P:

M-1N-1
Z Z nen pm,nm n Pmmn = Om'—m" On'—n’. (2.13)

m=0n=0

This says that the inner product between two base images is zero if two
different basis images are taken. The scalar product of a basis image
with itself is one. The M N basis images thus span an M x N-dimensional
vector space over the set of real numbers.

The analogy to the well-known two- and three-dimensional vector
spaces RZ and R3 helps us to understand how other representations for
images can be gained. An M X N image represents a point in the M x N
vector space. If we change the coordinate system, the image remains
the same but its coordinates change. This means that we just observe
the same piece of information from a different point of view. We can
draw two important conclusions from this elementary fact. First, all
representations are equivalent to each other. Each gives a complete rep-
resentation of the image. Secondly, suitable coordinate transformations
lead us from one representation to the other and back again.

From the manifold of other possible representations beside the spa-
tial representation, only one has gained prime importance for image
processing. Its base images are periodic patterns and the “coordinate
transform” that leads to it is known as the Fourier transform. Figure 2.11
shows how the same image that has been composed by individual pixels
in Fig. 2.10 is composed of periodic patterns.

A periodic pattern is first characterized by the distance between two
maxima or the repetition length, the wavelength A (Fig. 2.12). The direc-
tion of the pattern is best described by a vector normal to the lines of
constant gray values. If we give this vector k the length 1/A

k| =1/A, (2.14)

the wavelength and direction can be expressed by one vector, the wave
number k. The components of k = [kq, ko' directly give the number of
wavelengths per unit length in the corresponding direction. The wave
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Figure 2.11: The first 56 periodic patterns, the basis images of the Fourier trans-
form, from which the image in Fig. 2.10 is composed.

A
X3

k A=1/1k|

AX

»
T Lt
1

] X,
Ax=ng/2n € /K

Figure 2.12: Description of a 2-D periodic pattern by the wavelength A, wave
number k, and phase @.

number k can be used for the description of periodic patterns in any
dimension.

In order to complete the description of a periodic pattern, two more
quantities are required: the amplitude v and the relative position of the
pattern at the origin (Fig. 2.12). The position is given as the distance Ax
of the first maximum from the origin. Because this distance is at most
a wavelength, it is best given as a phase angle @ = 2tAx /A = 21tk - Ax
(Fig. 2.12) and the complete description of a periodic pattern is given by

rcos(ZTrka—cp). (2.15)

This description is, however, mathematically quite awkward. We rather
want a simple factor by which the base patterns have to be multiplied,
in order to achieve a simple decomposition in periodic patterns. This is
only possible by using complex numbers § = v exp(—i@) and the com-
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plex exponential function exp(ip) = cos @ + isin@. The real part of
gexp(2mik® x) gives the periodic pattern in Eq. (2.15):

R(gexp(2mik!x)) = r cos(2mk! x — @). (2.16)

In this way the decomposition into periodic patterns requires the
extension of real numbers to complex numbers. A real-valued image is
thus considered as a complex-valued image with a zero imaginary part.

The subject of the remainder of this chapter is rather mathemati-
cal, but it forms the base for image representation and low-level image
processing. After introducing both the continuous and discrete Fourier
transform in Sections 2.3.2 and 2.3.3, we will discuss all properties of
the Fourier transform that are of relevance to image processing in Sec-
tion 2.3.4. We will take advantage of the fact that we are dealing with
images, which makes it easy to illustrate some complex mathematical
relations.

2.3.2 One-Dimensional Fourier Transform
First, we will consider the one-dimensional Fourier transform.

Definition 2.1 (1-D FT) If g(x) : R — C is a square integrable function,
that is,

J |g(x0)|*dx < o, (2.17)

then the Fourier transform of g(x), g(k) is given by

00

gk) = Jg(x)exp(—ZTrikx)dx. (2.18)

— 00

The Fourier transform maps the vector space of square integrable func-
tions onto itself. The inverse Fourier transform of g(k) results in the
original function g(x):

g(x) = Jg(k) exp (2mikx) dk. (2.19)

The Fourier transform can be written in a more compact form if the
abbreviation _
w = 2™ (2.20)

is used and the integral is written as an inner product:

(g(x) |h(x)) = Jg*(x)h(x)dx, (2.21)
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where * denotes the conjugate complex. Then
gk = (W [g(x)). (2.22)

The function w! can be visualized as a vector that rotates anticlockwise
on the unit circle in the complex plane. The variable t gives the number
of revolutions.

Sometimes, it is also convenient to use an operator notation for the
Fourier transform:

g=Fg and g=7'4. (2.23)

A function and its transform, a Fourier transform pair, is simply denoted
by g(x) o—s g (k).

For the discrete Fourier transform (DFT), the wave number is now an
integer number that indicates how many wavelengths fit into the interval
with N elements.

Definition 2.2 (1-D DFT) The DFT maps an ordered N -tuple of complex
numbers g, the complex-valued vector

g=19091,....9v1]", (2.24)

onto another vector g of a vector space with the same dimension N.

1! 2minv
Go = Nngogn exp (— - ) 0<v <N. (2.25)

The back transformation is given by

N-1 ]
gn = Zév exp(zﬂ;]nv), 0<n<N. (2.26)
v=0

Why we use an asymmetric definition for the DFT here is explained in
Section 2.3.6.

Again it is useful to use a convenient abbreviation for the kernel of
the DFT; compare Eq. (2.20):

wy = w/N = exp (%) . 2.27)

As the continuous Fourier transform, the DFT can be considered as

the inner product of the vector g with a set of N orthonormal basis

vectors 1 T
by = —< [wR, wh, Wi, w0 (2.28)

VN
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Figure 2.13: The first 9 basis functions of the DFT for N = 16; a real part (cosine
function), b imaginary part (sine function).

Then

—nv

N-1

. 1 1 1

Jv = N E WN  Y9n = \/7N (by |g) = ﬁh”Tg' (2.29)
n=0

Note the second compact notation of the scalar product on the right-
hand side of the equation using the superscript T that includes to take
the complex conjugate of the first vector.

Equation (2.29) means that the coefficient g, in the Fourier space is
obtained by projecting the vector g onto the basis vector b,. The N
basis vectors b, are orthogonal to each other:

1 v=2
b,'by =6y = 2.30
v v {0 otherwise. ( )

Consequently, the set b, forms an orthonormal basis for the vector
space, which means that each vector of the vector space can be expressed
as a linear combination of the basis vectors of the Fourier space. The DFT
calculates the projections of the vector g onto all basis vectors directly,
i.e., the components of g in the direction of the basis vectors. In this
sense, the DFT is just a special type of coordinate transformation in
an M-dimensional vector space. Mathematically, the DFT differs from
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Table 2.1: Comparison of the continuous Fourier transform (FT), the Fourier
series (FS), the infinite discrete Fourier transform (IDFT), and the discrete Fourier
transform (DFT) in one dimension (w = e2™),

Type Forward transform Backward transform
frxkeR gtk) = Jg(x)wkadx g(x) = Jé(k)wk"dk
700Ax _°°oo
l;SSEXZE [0, Ax], Gu = i Jg(x)w—vx/Ade g(x) = vzmngvxmx
0 -
0 1/Ax
IszT[O":Lle/AZ;(] g(k) = n;wgnwfnkAx gn = ij g(k)wnkAXdk
0
1 N-l No1
DFT: n,v € Zn gv = Ngognwﬁvn gn = vgongxn

more familiar coordinate transformations such as rotation in a three-
dimensional vector space (Section 7.2.2) only because the vector space
is over the field of the complex instead of real numbers and has many
more dimensions.

The real and imaginary parts of the basis vectors are sampled sine
and cosine functions of different wavelengths (Fig. 2.13). The index v
denotes how often the wavelength of the function fits into the interval
[0, M]. The basis vector b is a constant real vector. The projection onto
this vector results in the mean of the elements of the vector g multiplied
by +/N.

Besides the continuous and discrete Fourier transforms there are two
other forms you may be familiar with: the Fourier series (FS) that maps a
function in a finite interval [0, Ax] to an infinite series of coefficients and
the infinite discrete Fourier transform (IDFT) that maps an infinite series
of complex numbers to a finite interval [0,1/Ax] in the Fourier space.
Therefore it is illustrative to compare the DFT with these transforms
(Table 2.1).

2.3.3 Multidimensional Fourier transform

The Fourier transform can easily be extended to multidimensional sig-
nals.

Definition 2.3 (Multidimensional FT) If g(x) : RY — C is a square inte-
grable function, that is,

[ a2 a"x = (g0 lge) = gl <= @31
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then the Fourier transform of g(x), g (k) is given by

gk) = Jg(x) exp (—ZWika) d"x = <wa" |g(x)> (2.32)

and the inverse Fourier transform by

g(x) = Jg(k) exp (2mik’x) dVk = (w** |g(k) ) . (2.33)

The scalar product in the exponent of the kernel xTk makes the kernel
of the Fourier transform separable, that is, it can be written as

w
wr'k = TTwkrxr, (2.34)
p=1

The discrete Fourier transform is discussed here for two dimensions.
The extension to higher dimensions is straightforward.

Definition 2.4 (2-D DFT) The 2-D DFT maps complex-valued M x N ma-
trices on complex-valued M x N matrices:

. Mo 2mmimu 21inv
Juy = mmzzlonzzlogm,n exp (— M ) exp (— N ) (2.35)
or
4 1SS —nv —mu
Juy = mmzz:o (ngogm,nWN ) Wy - (2.36)

In the second line, the abbreviation defined in Eq. (2.27) is used. As in
the one-dimensional case, the DFT expands a matrix into a set of NM
basis matrices which span the N x M-dimensional vector space over the
field of complex numbers. The basis matrices are of the form

WO
Wit
1 2u -
By, = iTi Wy [wo,wﬁ,,wjzvv,...,wl(\,N DU] ) (2.37)
MxN .
(M-1)u

w

In this equation, the basis matrices are expressed as an outer product of
the column and the row vector that form the basis vectors of the one-
dimensional DFT (Eq. (2.28)). This reflects the separability of the kernel
of the 2-D DFT.
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Then the 2-D DFT can again be written as an inner product

~ 1
gu,v - m <Bu,v |G> ’ (238)

where the inner product of two complex-valued matrices is given by

M-1N-1
(GIH) = > > g nhmn. (2.39)

m=0n=0

The inverse 2-D DFT is given by

M-1N-1
Gnn = > > GuaoWi Wi = VMN (Bo,n |G). (2.40)
u=0v=0

2.3.4 Properties of the Fourier transform

In this section we discuss the basic properties of the continuous and dis-
crete Fourier transform. We point out those properties of the FT that are
most significant for image processing. Together with some basic Fourier
transform pairs (> R5), these general properties (> R4, > R7) form a pow-
erful framework with which further properties of the Fourier transform
and the transforms of many functions can be derived without much ef-
fort.

Periodicity of DFT. The kernel of the DFT in Eq. (2.25) shows a charac-
teristic periodicity

exp (—

The definitions of the DFT restrict the spatial domain and the Fourier
domain to a finite number of values. If we do not care about this restric-
tion and calculate the forward and back transformation for all integer
numbers, we find from Egs. (2.38) and (2.40) the same periodicities for
functions in the space and Fourier domain:

wave number domain gy kmp+IN = Guv, VK, lE€Z,

space domain Im+kMn+IN = Gmn, VK, 1€Z. (2.42)

These equations state a periodic replication in all directions in both
domains beyond the original definition range. The periodicity of the
DFT gives rise to an interesting geometric interpretation. In the one-
dimensional case, the border points gy-1 and gy = go are neighbor-
ing points. We can interpret this property geometrically by drawing the
points of the vector not on a finite line but on a circle, the so-called
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Figure 2.14: Geometric interpretation of the periodicity of the one- and two-
dimensional DFT with a the Fourier ring and b the Fourier torus.

Fourier ring (Fig. 2.14a). This representation has a deeper meaning when
we consider the Fourier transform as a special case of the z-transform
[150]. With two dimensions, a matrix is mapped onto a torus (Fig. 2.14b),
the Fourier torus.

Symmetries. Four types of symmetries are important for the Fourier
transform:

even gl=x) = g,
odd gx) = g,
Hermitian gl-x) = g*(x), (2.43)
anti-Hermitian g(-x) = -g*(x)

The symbol * denotes the complex conjugate. The Hermitian symme-
try is of importance because the kernels of the FT Eq. (2.18) and DFT
Eq. (2.25) are Hermitian.

Any function g(x) can be split into its even and odd parts by

) - 89 »

With this partition, the Fourier transform can be split into a cosine and
a sine transform:

g(k) = ZJeg(x) cos(2mkx)d" x + ZiJ"g(x) sin(2mrk’x)d" x. (2.45)
0 0
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It follows that if a function is even or odd, its transform is also even or
odd. The full symmetry relations are:

real o—e Hermitian

imaginary o—e anti-Hermitian

Hermitian o—e real

anti-Hermitian o—e imaginary

even o—e even

odd o—e odd (2.46)
real and even o—e real and even

real and odd o—e imaginary and odd

imaginary and even o—e imaginary and even
imaginary and odd o—e real and odd

The DFT shows the same symmetries as the FT (Egs. (2.43) and (2.46)).
In the definition for even and odd functions g(—x) = +g(x) only x
must be replaced by the corresponding indices: g—n = =gn Or g—m,—n =
+9gmn. Note that because of the periodicity of the DFT, these symmetry
relations can also be written as

Ig-m,—n = TImn = GM-mN-n = T9mmn (247)

for even (+ sign) and odd (— sign) functions. This is equivalent to shifting
the symmetry center from the origin to the point [M/2, N /217,

The study of symmetries is important for practical purposes. Care-
ful consideration of symmetry allows storage space to be saved and al-
gorithms to speed up. Such a case is real-valued images. Real-valued
images can be stored in half of the space as complex-valued images.
From the symmetry relation Eq. (2.46) we can conclude that real-valued
functions exhibit a Hermitian DFT:

In = gz —  gn-v= é;i.* (2.48)

Imn =Y9mn °—° IM-uN-v = YGyv-
The complex-valued DFT of real-valued vectors is, therefore, completely
determined by the values in one half-space. The other half-space is ob-
tained by mirroring at the symmetry center [N/2]. Consequently, we
need the same amount of storage space for the DFT of a real vector as
for the vector itself, as only half of the complex spectrum needs to be
stored.

In two and higher dimensions, matters are slightly more complex.
Again, the Fourier transform of a real-valued image is determined com-
pletely by the values in one half-space, but there are many ways to select
the half-space. This means that only one component of the wave number
is limited to positive values.
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Figure 2.15: a Half-space as computed by an in-place Fourier transform algo-
rithm; the wave number zero is in the lower left corner; b FT with the missing
half appended and remapped so that the wave number zero is in the center.

The Fourier transform of a real M X N image can be represented by
M rows and N/2 + 1 columns (Fig. 2.15) assuming that N is even. Un-
fortunately, N/2 + 1 columns are required, because the first (m = 0)
and last column (m = M/2) are symmetric to themselves according
to Eq. (2.48). Thus it appears impossible to overwrite a real image by
its complex Fourier transform because we need one more column. A
closer examination shows that it works nevertheless. The first and last
columns are real-valued because of symmetry reasons (Jon-v = g{)“’v
and g2 N—v = Jarj2.)- Therefore, the real part of column M/2 can be
stored in the imaginary part of column 0.

For real-valued image sequences, again we need only a half-space to
represent the spectrum. Physically, it makes the most sense to choose
the half-space that contains positive frequencies. In contrast to a single
image, we obtain the full wave-number space. Now we can identify the
spatially identical wave numbers k and —k as structures propagating in
opposite directions.

Separability. The kernel of the Fourier transform is separable (Eq. (2.34)).
Therefore, the transform of a separable function is also separable:

w w
[Taxp)o— [T g(kp). (2.49)
p=1 r=1

This property is essential to compute transforms of multidimensional
functions efficiently from 1-D transforms because many of them are sep-
arable.
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Similarity. The similarity theorem states how scaling of the coordinate
system influences the Fourier transform. In one dimension, a function
can only be scaled (x’ = ax). In multiple dimensions, the coordinate
system can be transformed in a more general way by an affine transform
(x" = Ax), i.e., the new basis vectors are linear combinations of the old
basis vectors. A special case is the rotation of the coordinate system.

Theorem 2.1 (Similarity) Let a be a non-zero real number, A a real, in-
vertible matrix, and R an orthogonal matrix representing a rotation of the
coordinate system (R™' = RT, detR = 1). Then the following similarity
relations hold:

1 .
Scalar glax) o—e Wg(k/a),
, S Ty-1 (2.50)
Affine transform g(Ax) 7detAg((A ) k),
Rotation g(Rx) o—e J(Rk).

If a function is squeezed in the spatial domain, it is stretched in the
Fourier domain, and vice versa. A rotation of the coordinate system in
the spatial domain causes the identical rotation in the Fourier domain.
The above similarity theorems do not apply to the discrete Fourier
transform because an arbitrary scaling and rotation is not possible. A
stretching of a discrete function is only possible by an integer factor
K (upsampling) and the newly generated discrete points are filled with
Zeros:
(Gr)n = {gn/K n O,I.<,2K,...(N 1)K) 2.51)
0 otherwise.

Theorem 2.2 (Similarity, discrete) Let g be a complex-valued vector with
N elements and K € N. Then the discrete Fourier transform of the up-
sampled vector g,x with KN elements is given by

1. . A A
gk o 9 with  gkn+v = Gu- (2.52)

Upsampling by a factor K thus simply results in a K-fold replication
of the Fourier transform. Note that because of the periodicity of the
discrete Fourier transform discussed at the beginning of this section,

gkN+v = gv-

Shift. In Section 2.3.1 we discussed some properties of the basis images
of the Fourier space, the complex exponential functions exp (21Tika>. A
spatial shift of these functions causes a multiplication by a phase factor:

exp <2Tri(x — xo)Tk> = exp <—27Tixgk> exp (27Tika> . (2.53)
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As a direct consequence of the linearity of the Fourier transform, we can
formulate the following shift theorem:

Theorem 2.3 (Shift) If the function g(x) has the Fourier transform g(k),
then g(x — xq) has the Fourier transforms exp(—ZTrixgk)g(k).

Thus, a shift in the spatial domain does not change the Fourier transform
except for a wave number-dependent phase change 27Tx0k

The shift theorem can also be applied in the Fourier domain. A shift
in the Fourier space, g(k — ko), results in a signal in the spatial domain
that is modulated by a complex exponential with the wave number vector
ko: eXp(ZTrikgx)g(x).

Convolution. Convolution is one of the most important operations for
signal processing. For a continuous signal it is defined by

(g*h)(x) = J hix')g(x —x")d"x'. (2.54)

In signal processing, the function h(x) is normally zero except for a
small area around zero and is often denoted as the convolution mask.
Thus, the convolution with h(x) results in a new function g’ (x) whose
values are a kind of weighted average of g(x) in a small neighborhood
around x. It changes the signal in a defined way, for example, makes it
smoother. Therefore it is also called a filter.

One- and two-dimensional discrete convolution are defined analo-
gous to Eq. (2.54) by

N-1 M-1N-1
= Z hn gn-w, g;n,n = Z Z hm'w Gm-m’ n—n’ (2.55)
n’ =0 m’ =0n"=0

The convolution theorem for the FT and DFT states:

Theorem 2.4 (Convolution) Ifg(x)(g, G) has the Fourier transforms g (k)
(g, G) and h(x), (h, H) has the Fourier transforms h(k)(h H), then h %
g(h x g,H x G) has the Fourier transforms h(k)g(k) (Nhg,MNHG):

FT: h(x) % g(x) —e hK)g(k),
1-D DFT: hxg o—e  Nhg, (2.56)
2-D DFT: Hx*xG —e MNHG.

Thus, convolution of two functions means multiplication of their
transforms. Likewise, convolution of two functions in the Fourier do-
main means multiplication in the space domain. The simplicity of con-
volution in the Fourier space stems from the fact that the base func-

tions of the Fourier domain, the complex exponentials exp (2171ka>,
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are joint eigenfunctions of all convolution operators. This means that
a convolution operator does not change these functions except for the
multiplication by a factor.

From the convolution theorem, the following properties are immedi-
ately evident. Convolution is

commutative hxg=g=x*xh,
associative hy x (hy xg) = (hy x ho) * g, (2.57)
distributive over addition (hy +hy)xg=hy xg+hy *x g.

In order to grasp the importance of these properties of convolution,
we note that two operations that do not look so at first glance, are also
convolution operations: the shift operation and all derivative operators.

In both cases the Fourier transform is only multiplied by a complex
factor. For a shift operation this can be seen directly from the shift
theorem (Theorem 2.3). The convolution mask of a shift operator S is a
shifted 6 distribution:

S(s)g(x) =0(x —s) *x g(x). (2.58)

For a partial derivative of a function in the spatial domain the differ-
entiation theorem states:

Theorem 2.5 (Differentiation) If g(x) is differentiable for all x and has
the Fourier transform g(k), then the Fourier transform of the partial
derivative 0g(x)/0xp is 2mik,g(k):

g (x)
0xp

2mik, g (k). (2.59)

The differentiation theorem results directly from the definition of the
inverse Fourier transform in Eq. (2.33) by interchanging the partial deriv-
ative with the Fourier integral.

The inverse Fourier transform of 2trik;, that is, the corresponding
convolution mask, is no longer an ordinary function (27rik; is not ab-
solutely integrable) but the derivative of the § distribution:

2mik o—e §'(x) =

do(x) _ limi (exp(—rrxz/az)
a

dx a—0 dx ) - (260

Of course, the derivation of the ¢ distribution exists—as all properties
of distributions—only in the sense as a limit of a sequence of functions
as shown in the preceding equation.

With the knowledge of derivative and shift operators being convolu-
tion operators, we can use the properties summarized in Eq. (2.57) to
draw some important conclusions. As any convolution operator com-
mutes with the shift operator, convolution is a shift-invariant operation.
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Furthermore, we can first differentiate a signal and then perform a con-
volution operation or vice versa and obtain the same result. The proper-
ties in Eq. (2.57) are essential for an effective computation of convolution
operations.

Central-limit theorem. The central-limit theorem is mostly known for
its importance in the theory of probability [151]. However, it also plays
an important role for signal processing as it is a rigorous statement of the
tendency that cascaded convolution tends to approach Gaussian form
(o< exp(—ax?)). Because the Fourier transform of the Gaussian is also a
Gaussian (> R6), this means that both the Fourier transform (the transfer
function) and the mask of a convolution approach Gaussian shape.

Thus the central-limit theorem is central to the unique role of the
Gaussian function for signal processing. The sufficient conditions under
which the central-limit theorem is valid can be formulated in different
ways. We use here the conditions from [151] and express the theorem
with respect to convolution.

Theorem 2.6 (Central-limit theorem) Given N functions h, (x) with a
zero mean [°,, xhy(x)dx and the variance o2 = [, x*hy(x)dx with

z=x/0o,02=3N_ 02 then

h:]\ljim i ho % ...% hy o< exp(—z2/2) (2.61)
provided that
N
lim » 02 — oo (2.62)
N=eo 21

and there exists a number x > 2 and a finite constant ¢ such that

(o)

Jx"‘hn(x)dx <c<o Vn. (2.63)

— 00

The theorem is of great practical importance because — especially if
hy is smooth — the Gaussian shape is approximated sufficiently accu-
rately for values of N as low as 5.

Smoothness and compactness. The smoother a function is, the more
compact is its Fourier transform. This general rule can be formulated
more quantitatively if we express the smoothness by the number of
derivatives that are continuous and the compactness by the asymptotic
behavior for large values of k. Then we can state: If a function g(x) and
its first n — 1 derivatives are continuous, its Fourier transform decreases
at least as rapidly as Ikl’(””) for large k, that is, limx|- |k|"g(k) = 0.

As simple examples we can take the box and triangle functions (see
next section). The box function is discontinuous (n = 0), its Fourier
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transform, the sinc function, decays with |k|~!. In contrast, the triangle
function is continuous, but its first derivative is discontinuous. There-
fore, its Fourier transform, the sinc? function, decays steeper with |k| 2.
In order to include also impulsive functions (6 distributions) in this re-
lation, we note that the derivative of a discontinuous function becomes
impulsive. Therefore, we can state: If the nth derivative of a function
becomes impulsive, the function’s Fourier transform decays with |k|~".

The relation between smoothness and compactness is an extension
of reciprocity between the spatial and Fourier domain. What is strongly
localized in one domain is widely extended in the other and vice versa.

Uncertainty relation. This general law of reciprocity finds another quan-
titative expression in the classical uncertainty relation or the bandwidth-

duration product. This theorem relates the mean square width of a func-

tion and its Fourier transform. The mean square width (Ax)? is defined

as

o o 2
Jx2|g(x)|2dx Jx|g(x)\2dx

(Ax)? = =5 - [ = . (2.64)
[ 190012 ax | gt 2 ax

It is essentially the variance of | g(x) |2, a measure of the width of the
distribution of the “energy” of the signal. The uncertainty relation states:

Theorem 2.7 (Uncertainty relation) The product of the variance of
|g(x)] 2 (Ax)2, and of the variance of | (k) | 2 (Ak)2, cannot be smaller
than 1/4rr:

AxAk > 1/(477). (2.65)

The relations between compactness and smoothness and the uncer-
tainty relation give some basic guidance for the design of linear filter
(convolution) operators.

2.3.5 Phase and Amplitude

As outlined above, the DFT can be regarded as a coordinate transfor-
mation in a finite-dimensional vector space. Therefore, the image infor-
mation is completely conserved. The inverse transform results in the
original image again.

In Fourier space, we observe the image from another “point of view”.
Each point in the Fourier domain contains two pieces of information: the
amplitude and the phase, i.e., relative position, of a periodic structure.



< start menu

58 2 Image Representation

b

iob
e

amplifude amplitude

Figure 2.16: Illustration of the importance of phase and amplitude in Fourier
space for the image content: a, b two original images; ¢ composite image using
the phase from image b and the amplitude from image a; d composite image
using the phase from image a and the amplitude from image b.

Given this composition, we ask whether the phase or the amplitude con-
tains the more significant information on the structure in the image, or
whether both are of equal importance.

In order to answer this question, we perform a simple experiment.
Figure 2.16a, b shows two images. One shows Heidelberg University
buildings, the other several lines of printed text. Both images are Fourier
transformed and then the phase and amplitude are interchanged as il-
lustrated in Fig. 2.16¢, d. The result of this interchange is surprising. It
is the phase that determines the content of an image for both images.
Both images look patchy but the significant information is preserved.

From this experiment, we can conclude that the phase of the Fourier
transform carries essential information about the image structure. The
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amplitude alone implies only that such a periodic structure is contained
in the image but not where. We can also illustrate this important fact
with the shift theorem (Theorem 2.3, p. 54 and > R7). A shift of an object
in the space domain leads to a shift of the phase in the wave number
domain only. The amplitude is not changed. If we do not know the
phase of its Fourier components, we know neither what the object looks
like nor where it is located.

It becomes obvious also that the power spectrum, i.e., the squared
amplitude of the Fourier components (see also Section 3.5.3), contains
only very little information, since all the phase information is lost. If a
gray value can be associated with the amplitude of a physical process, say
a harmonic oscillation, then the power spectrum gives the distribution
of the energy in the wave number domain.

2.3.6 Alternative Definitions

In the literature several variations of the Fourier transform exist, which can lead
to a lot of confusions and errors. This has to do with the definition of the wave
number. The definition of the wave number as a reciprocal wavelength k = 1/A
is the most useful for signal processing, because k directly gives the number
of wavelengths per unit length. In physics and electrical engineering, however,
a definition including the factor 21 is more common: k = 27r/A. With this
notation, two forms of the Fourier transform can be defined: the asymmetric
form

g(k) = (exp(ikx) |g(x) ), g(x) = % {exp(-ikx) |§(k) ) (2.66)

and the symmetric form

NP S R
gk) = o <exp(1kx) |g(x)>, g(x) = o <exp( ikx)

gk)). (2.67)

Because all three versions of the Fourier transform are in common use, it is likely
that wrong factors in Fourier transform pairs will be obtained. The rules for
conversion of Fourier transform pairs between the three versions can directly
be inferred from the definitions and are summarized here:

k=1/A,Eq. (2.22)  g(x) o—s é(lf)
k =21/A, Eq. (2.66) g(x) o—e g(k/2m) (2.68)
k =2m/A Eq. (2.67) g(x) o—e G(k/v/2m)//2T.

2.3.7 Practical Application of the DFT
Units. For a practical application of the DFT, it is important to consider the

various factors that can be used in the definition of the DFT and to give them
a clear meaning. Besides the definition in Eq. (2.29) two others are commonly
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used:
1 N=t ] Nl
(a) év=7ZWX/"vgn —0 gn=7zwﬁv£§v,
\/NH:O \/Nn:O
1 N-1 N-1
(b)  Gu=3 W an = gn= 2 Wi G, (2.69)
n=0 n=0
N-1 1Nl
©  Gv=2WN"gn e gn=3 2V Go
n=0 n=0

Mathematically spoken, the symmetric definition (a) is the most elegant because
it uses in both directions the scalar product with the orthonormal base vectors
in Egs. (2.28) and (2.29). In practice, definition (b) is used most often, because
Jo gives the mean value of the vector in the spatial domain, independent of its
length:

1 N-1 1 N-1
o=~ > Wy""n =2 gn (2.70)
Nn:O Nn:O

Therefore we will use definition (b) almost everywhere in this book.

In practice it is important to know which spatial or temporal intervals have been
used to sample the discrete signals. Only then is it possible to compare DFTs
correctly that have been sampled with different intervals. The relation can be
seen most easily if we approximate the Fourier integral in Eq. (2.18) by a sum
and sample the values in the spatial and temporal domain using x = nAx,
k = vAk and AxAk = 1/N:

Jg(Ak) Jg(x) exp (—2mivAkx) dx

N-1

~ Zgnexp(—ZTrinvAxAk)Ax (2.71)
n=0

= NAXLNZ_:I ex (—M>—NAXA

- N gn p N - gv-

n=0

These equations state that the Fourier transform g, computed with the DFT
must be multiplied by the factor NAx = 1/Ak in order to relate it to a unit
interval of the wave number. Without this scaling, the Fourier transform is
related to the interval Ak = 1/(NAx) and thus differs for signals sampled with
different rates.

For 2-D and higher-dimensional signals corresponding relations are valid:

gwAk,uldky) = NAXMAYGyy (2.72)

1
= Ak Ak, I

The same scaling must be applied to the squared signals (energy) and not the
squared factors from Eq. (2.71). This result follows from the Rayleigh theorem
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a
K,

Figure 2.17: Partition of the Fourier domain into a Cartesian and b logarithmic-
polar intervals.

for continuous and discrete signals (> R4, > R7):

Continuous: J lg(x)|*dx = J |g(k) | dk,~ > |gvak)|® ak
- e o (2.73)

= , N ,
Discrete: N Slgnl”= > lav]”.
n=0 v=0

The Rayleigh theorem says that the signal energy can either be integrated in the
spatial or the Fourier domain. For discrete Signals this means that the average
energy is either given by averaging the squared signal in the spatial domain
or by summing up the squared magnitude of the signal in the Fourier domain
(if we use definition (b) of the DFT in Eq. (2.69)). From the approximation of
the integral over the squared magnitude in the Fourier domain by a sum in
Eq. (2.73), we can conclude that |§(vAk) |* ~ | g, |° /Ak. The units of the thus
scaled squared magnitudes in the Fourier space are -/m~! or -/Hz for time
series, where - stands for the units of the squared signal.

Dynamic Range. While in most cases it is sufficient to represent an image
with 256 quantization levels, i.e., one byte per pixel, the Fourier transform
of an image needs a much larger dynamical range. Typically, we observe a
strong decrease of the Fourier components with the magnitude of the wave
number (Fig. 2.15). Consequently, at least 16-bit integers or 32-bit floating-point
numbers are necessary to represent an image in the Fourier domain without
significant rounding errors.

The reason for this behavior is not the insignificance of high wave numbers in
images. If we simply omit them, we blur the image. The decrease is caused
by the fact that the relative resolution is increasing. It is natural to think of
relative resolutions, because we are better able to distinguish relative distance
differences than absolute ones. We can, for example, easily see the difference of
10 cm in 1 m, but not in 1 km. If we apply this concept to the Fourier domain, it
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Figure 2.18: Representation of the Fourier transformed image in Fig. 2.7 in a
Cartesian and b logarithmic polar coordinates. Shown is the power spectrum
|Guu |2) multiplied by k2. The gray scale is logarithmic and covers 6 decades (see
also Fig. 2.15).

seems to be more natural to represent the images in a so-called log-polar coordi-
nate system as illustrated in Fig. 2.17. A discrete grid in this coordinate system
separates the space into angular and Ink intervals. Thus the cell area is propor-
tional to k2. To account for this increase of the area, the Fourier components
need to be multiplied by k? in this representation:

Jlg(k)lzdkldkz = szlg(k)lzdlnkdqa. (2.74)

If we assume that the power spectrum |g(k)|? is flat in the natural log-polar
coordinate system, it will decrease with k=2 in Cartesian coordinates.

For a display of power spectra, it is common to take the logarithm of the gray
values in order to compress the high dynamic range. The discussion of log-polar
coordinate systems suggests that multiplication by k2 is a valuable alternative.
Likewise, representation in a log-polar coordinate system allows a much better
evaluation of the directions of the spatial structures and the smaller scales
(Fig. 2.18).
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2.4 Discrete Unitary Transforms

2.4.1 General Properties

In Sections 2.3.1 and 2.3.2, we learnt that the discrete Fourier transform can
be regarded as a linear transformation in a vector space. Thus it is only an
example of a large class of transformations, called unitary transforms. In this
section, we discuss some of their general features that will be of help for a
deeper insight into image processing. Furthermore, we give examples of other
unitary transforms, which have gained importance in digital image processing.
Unitary transforms are defined for vector spaces over the field of complex num-
bers, for which an inner product is defined. Both the FT in Eq. (2.22) and DFT
in Eqg. (2.29) basically compute scalar products.

The basic theorem about unitary transform states:

Theorem 2.8 (Unitary transform) Let V be a finite-dimensional inner product
vector space. Let U be a one-to-one linear transformation of V onto itself. Then
the following are equivalent:

U is unitary.

U preserves the inner product, i.e., (g |h) = (Ug|Uh), Vg,h e V.

The inverse of U, U™, is the adjoint of U: UUT = I.

The row vectors (and column vectors) of U form an orthonormal basis of the
vector space V.

W=

In this theorem, the most important properties of a unitary transform are al-
ready related to each other: a unitary transform preserves the inner product.
This implies that another important property, the norm, is also preserved:

12 _

gl = (g |g)"* = (Ug |Ug)'">.

(2.75)
It is appropriate to think of the norm as the length or magnitude of the vector.
Rotation in R? or R3 is an example of a transform where the preservation of the
length of the vectors is obvious (compare also the discussion of homogeneous
coordinates in Section 7.7).

The product of two unitary transforms, U,U>, is unitary. As the identity op-
erator I is unitary, as is the inverse of a unitary operator, the set of all unitary
transforms on an inner product space is a group under the operation of com-
position. In practice, this means that we can compose/decompose complex
unitary transforms from/into simpler or elementary transforms.

We will illustrate some of the properties of unitary transforms discussed with
the discrete Fourier transform. First we consider the one-dimensional DFT in
symmetric definition Eq. (2.69):

1 Nl
gv=—7 Zgnwi/lnv-
\/ﬁ n=0
This equation can be regarded as a multiplication of the N X N matrix Wy

WN)nw = W&nv
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with the vector g:

g= J%VWN g. (2.76)
Explicitly, the DFT for an 8-dimensional vector is given by
[ do ] [ Wy wg owg wg owg owg wg owg | [ go ]
a wE owE wg wi wi wi owi owg || g
gz We W W§ wg Wg wg wg wg g2
g3 1| wg W wg wg wg wg o wg wg || g3
Ga | VB wg wi owg owi owg owi wg wi || ga
s weoWE Wy owg wg wg wg owi || gs
e wg owg owi ow§ wg wg wg wg || ge
| g7 | | Wy owg wi owg owg owg owg owg || gy

We made use of the periodicity of the kernel of the DFT Eq. (2.41) to limit the
exponents of W between 0 and 7. The transformation matrix for the DFT is
symmetric (W = WT); WT* is the back transformation.

For the two-dimensional DFT, we can write similar equations if we map the
M x N matrix onto an M N-dimensional vector. There is a simpler way, however,
if we make use of the separability of the kernel of the DFT as expressed in
Eq. (2.38). Using the M x M matrix W), and the N X N matrix Wy analogously
to the one-dimensional case, we can write Eq. (2.76) as

M-1N-1
A 1
Juwv = e z zgmn(WM)mu(WN)nv» (2.77)
MNm:On:O
or, in matrix notation,
G - —_w,T Wy = ——— Wy GW (2.78)
~—  JMN—L AT MNTMTN '
MXxN MXM MXN NxN

Physicists will be reminded of the theoretical foundations of quantum mechan-
ics which are formulated in an inner product vector space of infinite dimension,
the Hilbert space. In digital image processing, the difficulties associated with
infinite-dimensional vector spaces can be avoided.

After discussing the general features, some illustrative examples of unitary
transforms will be given. However, none of these transforms is as important as
the Fourier transform in signal and image processing.

2.4.2 Cosine, Sine, and Hartley Transforms

It is often inconvenient that the discrete Fourier transform maps real-valued to
complex-valued images. We can derive a real transformation if we decompose
the complex DFT into its real and imaginary parts:

2ITNnv L. 21ITNnVU
(WN)nv = COS (7T> +1isin <7T) . (2.79)

Neither the cosine nor the sine part is useful as a transformation kernel, since
these functions do not form a complete basis of the vector space. The cosine
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Figure 2.19: Base functions of one-dimensional unitary transforms for N = 8: a
cosine transform, b sine transform, and c Hartley transform.

and sine functions only span the subspaces of the even and odd functions,
respectively.

This problem can be solved by limiting the cosine transform and the sine trans-
form to the positive half space in the spatial and Fourier domains. Then sym-
metry properties play no role and the two transforms are defined as

cg(k) = Jg(x)\/?cos(ZTrkx)dx — g(x) = ch(k)\/?cos(erkx)dk
0 0

sg(k) = Ig(x)\/?sin(ZTrkx)dx —o g(x)=|%g(k)/2sin(2mkx)dk.
0

S —3

(2.80)

For the corresponding discrete transforms, adding trigonometric functions with
half-integer wavelengths can generate base vectors with the missing symmetry.
This is equivalent to doubling the base wavelength. Consequently, the kernels
for the cosine and sine transforms in an N-dimensional vector space are

_ /2 mnv 2 o mm+)(v+1)
Cny = Ncos( N ), Snv = N+1sm( N1 ) (2.81)

Figure 2.19a, b shows the base functions of the 1-D cosine and sine functions.
From the graphs, it is easy to imagine that all the base functions are orthogonal
to each other. Because of the doubling of the periods, both transforms now con-
tain even and odd functions. The base functions with half-integer wavelengths
fill in the functions with the originally missing symmetry.

The cosine transform has gained importance for image data compression [99].
It is included in the standard compression algorithm proposed by the Joint
Photographic Experts Group (JPEG).

The Hartley transform (HT) is a much more elegant solution than the cosine
and sine transforms for a transform that avoids complex numbers. By adding
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the cosine and sine function, we get an asymmetric kernel
cas 21kx = cos(21kx) + sin(2mwkx) = /2 cos(2m(kx — 1/8)) (2.82)

that is suitable for a transform over the whole space domain:
hg(k) = Jg(x) cas(2mrkx)dx e—o g(x) = J h (k) cas(2mkx)dk. (2.83)

The corresponding discrete Hartley transform (DHT) is defined as:

N-1 N-1
hg, = ngncas(ZTrnv/N) — gn= fz v cas(2mmnu /N). (2.84)

The base vectors for N = 8 are shown in Fig. 2.19c. Despite all elegance of the
Hartley transform for real-valued signals, it shows a number of disadvantages
in comparison to the Fourier transform. Especially the simple shift theorem
of the Fourier transform (Theorem 2.3, p. 54) is no longer valid. A shift rather
causes base functions with positive and negative wave numbers to be combined
with each other:

g(x —xg) o—e  Ng(k)cos(2mkxg) +"g§(—k) sin(2mkxg),

Gnw  o— "G, cosQmnU/N) + "gy_ysin@mnv/N). 8

Similar complications arise with the convolution theorem for the Hartley trans-
form (> R8).

2.4.3 Hadamard Transform

The base functions of the Hadamard transform are orthogonal binary patterns
(Fig. 2.20a). Some of these patterns are regular rectangular waves, others are
not. The Hadamard transform is computationally efficient, because its kernel
contains only the figures 1 and -1. Thus only additions and subtractions are
necessary to compute the transform.

2.4.4 Haar Transform

The base vectors of all the transforms considered so far are characterized by
the fact that the base functions spread out over the whole vector or image.
In this sense we denote these transforms as global. All locality is lost. If we
have, for example, two independent objects in our image, then they will be
simultaneously decomposed into these global patterns and will no longer be
recognizable as two individual objects in the transform.

The Haar transformis an example of a unitary transform which partly preserves
local information, since its base functions are pairs of impulses which are non-
zero only at the position of the impulse (Fig. 2.20a). With the Haar transform
the position resolution is better for smaller structures. As with the Hadamard
transform, the Haar transform is computationally efficient. Its kernel only in-
cludes the figures —1, 0, and 1.
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Figure 2.20: First 8 base functions of one-dimensional unitary transforms for
N = 16: a Hadamard transform and b Haar transform.

2.5 Fast Algorithms for Unitary Transforms

2.5.1 Importance of Fast Algorithms

Without an effective algorithm to calculate the discrete Fourier transform, it
would not be possible to use the Fourier transform in image processing. Applied
directly, Eq. (2.38) is prohibitively expensive. Each point in the transformed im-
age requires N2 complex multiplications and N2 — 1 complex additions (not
counting the calculation of the cosine and sine functions in the kernel). In total,
we need N* complex multiplications and N2(N? — 1) complex additions. This
adds up to about 8N* floating point operations. For a 512 x 512 image, this re-
sultsin 5x10!! operations. A 2-GHz PentiumIV processor on a PC delivers about
500 MFLOPs (million floating point operations per second) if programmed in a
high-level language with an optimizing compiler. A single DFT of a 512 x 512
image with 5 x 10! operations would require about 1,000 s or 0.3 h, much too
slow to be of any relevance for practical applications. Thus, the urgent need
arises to minimize the number of computations by finding a suitable algorithm.
This is an important topic in computer science. To find one we must study the
inner structure of the given task, its computational complexity, and try to find
out how it may be solved with the minimum number of operations.

As an intuitive example, consider the following simple search problem. A friend
lives in a high-rise building with N floors. We want to find out on which floor
his apartment is located. Our questions will only be answered with yes or no.
How many questions must we pose to find out where he lives? The simplest and
most straightforward approach is to ask “Do you live on floor n?”. In the best
case, our initial guess is right, but it is more likely to be wrong so that the same
question has to be asked with other floor numbers again and again. In the worst
case, we must ask exactly N — 1 questions, in the mean N/2 questions. With
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Figure 2.21: Decomposition of a vector into two vectors containing the even and
odd sampling points.

N

each question, we can only rule out one out of N possibilities, a quite inefficient
approach.

With the question “Do you live in the top half of the building?”, however, we
can rule out half of the possibilities with just one question. After the answer,
we know that he either lives in the top or bottom half, and can continue our
questioning in the same manner by splitting up the remaining possibilities into
two halves. With this strategy, we need far fewer questions. If the number of
floors is a power of two, say 2!, we need exactly I questions. Thus for N floors,
we need ld N questions, where 1d denotes the logarithm to the base of two.
The strategy applied recursively here for a more efficient solution to the search
problem is called divide and conquer.

One measure of the computational complexity of a problem with N components
is the largest power of N that occurs in the count of operations necessary to
solve it. This approximation is useful, since the largest power in N dominates
the number of operations necessary for large N. We speak of a zero-order
problem O(N?) if the number of operations does not depend on its size and
a linear-order problem O(N) if the number of computations increases linearly
with the size. Likewise for solutions. The straightforward solution of the search
problem discussed in the previous example is a solution of order N, O(N), the
divide-and-conquer strategy is one of O(Id N).

2.5.2 The 1-D Radix-2 FFT Algorithms

First we consider fast algorithms for the one-dimensional DFT, commonly ab-
breviated as FFT algorithms for fast Fourier transform. We assume that the
dimension of the vector is a power of two, N = 2. As the direct solution ac-
cording to Eq. (2.29) is O(N?) it seems useful to use the divide-and-conquer
strategy. If we can split the transformation into two parts with vectors the size
of N /2, we reduce the number of operations from N2 to 2(N/2)? = N?/2. This
procedure can be applied recursively Id N times, until we obtain a vector of size
1, whose DFT is trivial because nothing at all has to be done. Of course, this
procedure only works if the partitioning is possible and the number of addi-
tional operations to put the split transforms together is not of a higher order
than O(N).

The result of the recursive partitioning is interesting. We do not have to perform
a DFT at all. The whole algorithm to compute the DFT has been shifted over to
the recursive composition stages. If these compositions are of the order O (N),
the computation of the DFT totals to O(N1d N) since 1d N compositions have
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to be performed. In comparison to the direct solution of the order O (N?), this
is a tremendous saving in the number of operations. For N = 210 = 1024, the
number is reduced by a factor of about 100.

We part the vector into two vectors by choosing the even and odd elements
separately (Fig. 2.21):

N-1

gv = ZgneXp< 2mnv)
n=0
N/2-1 N/2-1 )
_ nzo Jon exp( 2Tr12nv) 4 nzo Jons1 €XP (_2771(2;[1+1)v) (2.86)
N/2-1 N/2-1
= nZO gonexp (— %) + exp (- 25Y) nZO Goner exp (— 2L )

Both sums constitute a DFT with N’ = N/2. The second sum is multiplied by
a phase factor which depends only on the wave number v. This phase factor
results from the shift theorem, since the odd elements are shifted one place to
the left.

As an example, we take the base vector with v = 1 and N = 8 (Fig. 2.21). Taking
the odd sampling points, the function shows a phase shift of r/4. This phase
shift is exactly compensated by the phase factor in Eq. (2.86):

exp(—2miv/N) = exp(—1ri/4).

The operations necessary to combine the partial Fourier transforms are just one
complex multiplication and addition, i.e., O(N'). Some more detailed consid-
erations are necessary, however, since the DFT over the half-sized vectors only
yields N /2 values. In order to see how the composition of the N values works,
we study the values for v from 0 to N/2 — 1 and N/2 to N — 1 separately. The
partial transformations over the even and odd sampling points are abbreviated
by ¢g, and °g,, respectively. For the first part, we can just take the partitioning
as expressed in Eq. (2.86). For the second part, v’ = v + N/2, only the phase
factor changes. The addition of N/2 results in a change of sign:

exp (_ 27T1(U]\'}‘ N/Z)) — —exp (_ 27;]11}) or W[:](U+N/2) e

Making use of this symmetry we can write

gv = °Gv+wy' gy
R . . 0<v <N/2. (2.87)
Juinie = Gv — W;/v °gv.

The Fourier transforms for the indices v and v + N/2 only differ by the sign
of the second term. Thus for the composition of two terms we only need one
complex multiplication. The partitioning is now applied recursively. The two
transformations of the N/2-dimensional vectors are parted again into two trans-
formations each. We obtain similar expressions as in Eq. (2.86) with the only
difference being that the phase factor has doubled to exp[—(2miv)/(N/2)]. The
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Figure 2.22: Signal flow diagram of the radix-2 decimation-in-time Fourier trans-
form algorithm for N = 8; for further explanation, see text.

even and odd parts of the even vector contain the points {0,4,8,--- ,N/2 —4}
and {2,6,10,---,N/2 — 2}, respectively.

In the last step, we decompose a vector with two elements into two vectors with
one element. As the DFT of a single-element vector is an identical operation
Eq. (2.29), no further calculations are necessary.

After the decomposition is complete, we can use Eq. (2.87) recursively with
appropriate phase factors to compose the original vector step by step in the in-
verse order. In the first step, we compose vectors with just two elements. Thus
we only need the phase factor for v = 0 which is equal to one. Consequently,
the first composition step has a very simple form:

1?0 A go+ 41 (2.88)

Jgo+Ni2 =91 = go— Y1
The algorithm we have discussed is called a decimation-in-time FFT algorithm,
as the signal is decimated in the space domain. All steps of the FFT algorithm
are shown in the signal flow diagram in Fig. 2.22 for N = 8. The left half of
the diagram shows the decimation steps. The first column contains the original
vector, the second the result of the first decomposition step into two vectors.
The vectors with the even and odd elements are put in the lower and upper
halves, respectively. This decomposition is continued until we obtain vectors
with one element.

As a result of the decomposition, the elements of the vectors are arranged in a
new order. That is all that is performed in the decomposition steps. No com-
putations are required. We can easily understand the new ordering scheme if
we represent the indices of the vector with dual numbers. In the first decom-
position step we order the elements according to the least significant bit, first
the even elements (least significant bit is zero), then the odd elements (least
significant bit is one). With each further decomposition step, the bit that gov-
erns the sorting is shifted one place to the left. In the end, we obtain a sorting
in which the ordering of the bits is completely reversed. The element with the
index 1 = 001,, for example, will be at the position 4 = 100,, and vice versa.
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Figure 2.23: Signal flow path for the calculation of gy and g4 with the decimation-
in-time FFT algorithm for an 8-dimensional vector.

Consequently, the chain of decomposition steps can be performed with one op-
eration by interchanging the elements at the normal and bit-reversed positions.
This reordering is known as bit reversal.

Further steps on the right side of the signal flow diagram show the stepwise com-
position to vectors of double the size. The composition to the 2-dimensional
vectors is given by Eq. (2.88). The operations are pictured with arrows and
points having the following meaning: points represent a figure, an element of
the vector. These points are called the nodes of the signal flow graph. The
arrows transfer the figure from one point to another. During the transfer the
figure is multiplied by the factor written close to the arrow. If the associated
factor is missing, no multiplication takes place. A value of a knot is the sum of
the values transferred from the previous level.

The elementary operation of the FFT algorithm involves only two knots. The
lower knot is multiplied with a phase factor. The sum and difference of the two
values are then transferred to the upper and lower knot, respectively. Because
of the crossover of the signal paths, this operation is denoted as a butterfly
operation.

We gain further insight into the FFT algorithm if we trace back the calculation
of a single element. Figure 2.23 shows the signal paths for gy and g4. For each
level we go back the number of knots contributing to the calculation doubles.
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In the last stage all the elements are involved. The signal path for gy and g, are
identical but for the last stage, thus nicely demonstrating the efficiency of the
FFT algorithm.

All phase factors in the signal path for gy are one. As expected from Eq. (2.29),
Jo contains the sum of all the elements of the vector g,

go =[(go +g4) + (g2 + g6)1 + [(g1 + g5) + (g3 + g7) ],
while in the last stage for g4 the addition is replaced by a subtraction
ga =[(go +g4) + (g2 + g6)1 = [(g1 + g5) + (g3 + g7)].

In Section 2.4, we learnt that the DFT is an example of a unitary transform which
is generally performed by multiplying a unitary matrix with the vector. What
does the FFT algorithm mean in this context? The signal flow graph in Fig. 2.22
shows that the vector is transformed in several steps. Consequently, the unitary
transformation matrix is broken up into several partial transformation matrices
that are applied one after the other.

If we take the algorithm for N = 8 as shown in Fig. 2.22, the unitary matrix is
split up into three simpler transformations with sparse unitary transformations:

Tdo] [1 0 0 0 1 0 0 0 T

g1 01 0 0 0 wl o0 0

a2 0 01 0 0 ©0 w2 0

3 0001 0 O 0 w3

dga ||l 1 0 0 0 -1 0 0 0

35 01 0 0 0 -wl o 0

e 0 01 0 0 0 -w=2 0

Lgz-1 LO O 0 1 0 O 0 —w3
r1 01 0 0 0 O 071 00O T1 0 0 0 7[do]
01 0 i 0 0 0 O 1 000 -1 0 0 O g1
10 -1 0 00 0 O 001 00 0 1 0 g2
01 0 -4 0 0 0 O 001 00 0 -10 g3
00 0 0 1 01 0 01 000 1 0 O g4
00 0 0 0 1 0 i 01 000 -1 0 0 g5
000 0 1 0 -1 0 0001 0 0 0 1 g6
Lo o0 0 01 0 <4]JLo oo 10 0 0 -1]1| g7

The reader can verify that these transformation matrices reflect all the proper-
ties of a single level of the FFT algorithm. The matrix decomposition emphasizes
that the FFT algorithm can also be considered as a clever method to decompose
the unitary transformation matrix into sparse partial unitary transforms.

2.5.3 Measures for Fast Algorithms

According to the number of arithmetic operations required, there are many
other fast Fourier transform algorithms which are still more effective. Most of
them are based on polynomial algebra and number theory. An in-depth discus-
sion of these algorithms is given by Blahut [12]. However, the mere number
of arithmetic operations is not the only measure for an efficient algorithm. We
must also consider a number of other factors.
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Access to the data requires additional operations. Consider the simple example
of the addition of two vectors. There, besides addition, the following operations
are performed: the addresses of the appropriate elements must be calculated,;
the two elements are read into registers, and the result of these additions is
written back to the memory. Depending on the architecture of the hardware
used, these five operations constitute a significant overhead which may take
much more time than the addition itself. Consequently, an algorithm with a
complicated scheme to access the elements of a vector might add a considerable
overhead to the arithmetic operations. In effect, a simpler algorithm with more
arithmetic operations but less overhead to compute addresses may be faster.

Another factor for rating algorithms is the amount of storage space needed.
This not only includes the space for the code but also storage space required
for intermediate results or tables for constants. For example, a so-called in-
place FFT algorithm, which can perform the Fourier transform on an image
without using an intermediate storage area for the image, is very advantageous.
Often there is a trade-off between storage space and speed. Many integer FFT
algorithms, for example, precalculate the complex phase factors wy; and store
them in statically allocated tables.

To alarge extent the efficiency of algorithms depends on the computer architec-
ture used to implement them. If multiplication is performed either in software
or by a microcoded instruction, it is much slower than addition or memory
access. In this case, the aim of fast algorithms is to reduce the number of
multiplications even at the cost of more additions or a more complex memory
access. Such a strategy makes no sense on some modern high-speed architec-
tures where pipelined floating-point addition and multiplication take just one
clock cycle. The faster the operations on the processor, the more the memory
access becomes the bottleneck. Fast algorithms must now consider effective
memory access schemes. It is crucial that as many computations as possible
can be performed with one and the same set of data. In this way, these data can
be kept in a fast intermediate storage area, known as the memory cache, and
no direct access to the much slower general memory (RAM) is required.

After this detailed discussion of the algorithm, we can now estimate the number
of operations necessary. At each stage of the composition, N/2 complex mul-
tiplications and N complex additions are carried out. In total we need N/21dN
complex multiplications and N 1dN complex additions. A deeper analysis shows
that we can save even more multiplications. In the first two composition steps
only trivial multiplications by 1 or i occur (compare Fig. 2.22). For further steps
the number of trivial multiplications decreases by a factor of two. If our algo-
rithm could avoid all the trivial multiplications, the number of multiplications
would be reduced to (N/2)(Id N — 3).

The FFT algorithm is a classic example of a fast algorithm. The computational
savings are enormous. For a 512-element vector, only 1536 instead of 262 144
complex multiplications are needed compared to the direct calculation accord-
ing to Eq. (2.29). The number of multiplications has been reduced by a factor
170. Using the FFT algorithm, the discrete Fourier transform can no longer be
regarded as a computationally expensive operation, since only a few operations
are necessary per element of the vector. For a vector with 512 elements, only
3 complex multiplications and 8 complex additions, corresponding to 12 real
multiplications and 24 real additions, need to be computed per pixel.
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2.5.4 Radix-4 Decimation-in-Time FFT

Having worked out one fast algorithm, we still do not know whether the algo-
rithm is optimal or if even more efficient algorithms can be found. Actually, we
have applied only one special case of the divide-and-conquer strategy. Instead
of parting the vector into two pieces, we could have chosen any other partition,
say P Q-dimensional vectors, if N = PQ. This type of algorithms is called a
Cooley-Tukey algorithm [12].

Another partition often used is the radix-4 FFT algorithm. We can decompose
a vector into four components:

N/4-1
—4nv

v =
n=0
N/4-1

—2v —4nv
t Wy Z Gan+2WN +

n=0

z JanWy +wyY Z Jan+1Wy

N/4-1
—4nv

n=0
N/4-1

-3v —4nv
WN Z gan+3WN .
n=0

For simpler equations, we will use similar abbreviations as for the radix-2 algo-
rithm and denote the partial transformations by °g, - - - ,3 §. Making use of the
symmetry of wy, the transformations into quarters of each of the vectors are
given by

~ ~ — ~ 72 ~ 73 ~
Jv = 99, + w1y + Wy 2gy + Wy 33y
~ ~ R n 2V A . 303 A
Jv+N/4 0y —iwy" g — Wy 2gu + 1WN3U 39v
A -~ — A _2 A _3 A
Jv+N/2 = 9g, - wy” Y4, + Wy 2g, — wy" 39y
~ ~ . — ~ 72 ~ . 73 ~
Jv+3N/4 = 9gy + iwy” gy — Wy 2gy — iwyY 33y
or, in matrix notation,

dv 111 g,
Juinj4 -1 -1 i wy" 'gu
Guiny2 I -1 1 -1 || w24
~ . . -3 ~
Jv+3N/4 1 i -1 i Wy 3G

To compose 4-tuple elements of the vector, 12 complex additions and 3 complex
multiplications are needed. We can reduce the number of additions further by
decomposing the matrix into two simpler matrices:

Jv 10 1 0 10 1 0 9§,
Jv+N/4 01 0 -i 1 0 -1 0 wi 1dy
Guinz | |1 0 -1 0 01 0 1 w2l 2dy
Gv+3N/4 01 0 i 01 0 -1 wil 3y

The first matrix multiplication yields intermediate results which can be used
for several operations in the second stage. In this way, we save four addi-
tions. We can apply this decomposition recursively log, N times. As for the
radix-2 algorithm, only trivial multiplications in the first composition step are
needed. At all other stages, multiplications occur for 3/4 of the points. In total,
3/4N(logy N — 1) = 3/8N(IdN — 2) complex multiplications and 2N logy, N =
NIdAN complex additions are necessary for the radix-4 algorithm. While the
number of additions remains equal, 25 % fewer multiplications are required than
for the radix-2 algorithm.
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Figure 2.24: Signal flow diagram of the radix-2 decimation-in-frequency FFT
algorithm for N = 8.

2.5.5 Radix-2 Decimation-in-Frequency FFT

The decimation-in-frequency FFT is another example of a Cooley-Tukey algo-
rithm. This time, we break the N-dimensional input vector into N/2 first and
N/2 second components. This partition breaks the output vector into its even
and odd components:

N/2-1
9o = Z (gn + gn+N/2)W1:]7§)
N2 T (2.89)
Jov1 = Z Wﬁn(gn - gn+N/2)WKr1/1§}-
n=0

A recursive application of this partition results in a bit reversal of the elements
in the output vector, but not the input vector. As an example, the signal flow
graph for N = 8 is shown in Fig. 2.24. A comparison with the decimation-in-time
flow graph (Fig. 2.22) shows that all steps are performed in reverse order. Even
the elementary butterfly operations of the decimation-in-frequency algorithm
are the inverse of the butterfly operation in the decimation-in-time algorithm.

2.5.6 Multidimensional FFT Algorithms

Generally, there are two possible ways to develop fast algorithms for multidi-
mensional discrete Fourier transforms. Firstly, we can decompose the multidi-
mensional DFT into 1-D DFTs and use fast algorithms for them. Secondly, we
can generalize the approaches of the 1-D FFT for higher dimensions. In this
section, we show examples for both possible ways.

Decomposition into 1-D Transforms. A two-dimensional DFT can be bro-
ken up in two one-dimensional DFTs because of the separability of the kernel.
In the 2-D case Eq. (2.38), we obtain

Juy = z [Nzlgm,n exp (— 21-(;]”1) )} exp (_2171%) . (2.90)

mO n=0
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Figure 2.25: Decomposition of an image matrix into four partitions for the 2-D
radix-2 FFT algorithm.

The inner summation forms M 1-D DFTs of the rows, the outer N 1-D DFTs of
the columns, i.e., the 2-D FFT is computed as M row transformations followed
by N column transformations

N-1 .
N 1 2
Row transform Imv = — Z Imn €XP (— Trmu)
N B N
1M 2mTimu
Column transform gy, = — Z Imv €xXp (—7)
M o M

In an analogous way, a W-dimensional DFT can be composed of W one-dimen-
sional DFTs.

Multidimensional Decomposition. A decomposition is also directly pos-
sible in multidimensional spaces. We will demonstrate such algorithms with
the simple case of a 2-D radix-2 decimation-in-time algorithm.

We decompose an M X N matrix into four submatrices by taking only every
second pixel in every second line (Fig. 2.25). This decomposition yields

gu,v 1 1 1 1 O'Ogu,v
gu,v+N/2 _ 1 -1 1 -1 W](Jv O'IQu,v
éu+M/2,v B 1 1 -1 -1 WMM 1’0gu,v
gu+M/2,v+N/2 1 -1 -1 1 WX/[uWIT]v 1’lgu,v

The superscripts in front of § denote the corresponding partial transformation.
The 2-D radix-2 algorithm is very similar to the 1-D radix-4 algorithm. In a
similar manner as for the 1-D radix-4 algorithm (Section 2.5.4), we can reduce
the number of additions from 12 to 8 by factorizing the matrix:

1 1 1 1 1 0 1 0 1 0 0
1 -1 1 -1 [0 1 0 1 1 -1 0 0
1 1 -1 -1 [ |1 0 -1 0 0 0 1 1
1 -1 -1 1 0 1 0 -1 0 01 -1
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The 2-D radix-2 algorithm for an N x N matrix requires (3/4N?2)1d N complex
multiplications, 25 % fewer than the separation into two 1-D radix-2 FFTs. How-
ever, the multidimensional decomposition has the disadvantage that the mem-
ory access pattern is more complex than for the 1-D Fourier transform. With the
partition into a 1-D transform, the access to memory becomes local, yielding a
higher cache hit rate than with the distributed access of the multidimensional
decomposition.

2.5.7 Fourier Transform of Real Images

So far, we have only discussed the Fourier transform of complex-valued signals.
The same algorithms can be used also for real-valued signals. Then they are
less efficient, however, because the Fourier transform of a real-valued signal
is Hermitian (Section 2.3.4) and thus only half of the Fourier coefficients are
independent. This corresponds to the fact that also half of the signal, namely
the imaginary part, is zero.

It is obvious that another factor two in computational speed can be gained for
the DFT of real data. The easiest way to do so is to compute two real 1-D
sequences at once. This concept can easily be applied to the DFT of images,
because many 1-D DFTs must be computed. Thus we can put the first row x in
the real part and the second row y in the imaginary part and yield the complex
vector z = x +1iy. From the symmetry properties discussed in Section 2.3.4, we
infer that the transforms of the real and imaginary parts map in Fourier space
to the Hermitian and anti-Hermitian parts. Thus the Fourier transforms of the
two real M-dimensional vectors are given by

Xy =1/2(2y + 25_,), Yy =1/2(2y — 25%_,). (2.91)

2.6 Exercises

Problem 2.1: Spatial resolution of images

Representation of images with interactively adjustable number of points
(dip6ex02.01).

Problem 2.2: Quantization of images

Representation of images with interactively adjustable number of quantization
levels (dip6ex02.02).

Problem 2.3: Context-dependent brightness perception

Interactive demonstration of the context-dependent brightness perception of
the human visual system (dip6ex02.03).

Problem 2.4: Contrast resolution of the human visual system

Interactive experiment to determine the contrast resolution of the human visual
system (dip6ex02.04).
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Problem 2.5: Gamma value

Interactive adjustment of the gamma value for image display (dip6ex02.05).

Problem 2.6: *Contrast resolution with a logarithmic imaging sensor
Compute the relative brightness resolution Ag’/g’ caused by digitalization
(Ag’ = 1) of an image sensor with a logarithmic response of the form

g =ap+alogg
and a contrast range of six decades for 8 and 10 bit resolution. The minimum
gray value g is mapped to g’ = 0 and the 1106 times higher maximum gray
value to either g’ = 255 or g’ = 1023.
Problem 2.7: Partitioning into periodic patterns
Interactive demonstration of the partitioning of an image into periodic patterns,
i. e, the basis functions of the Fourier transform (dip6ex02.06).
Problem 2.8: Fourier transform

Interactive tutorial for the Fourier transform (dip6ex02.07).

Problem 2.9: Contrast range of Fourier transformed images

Interactive tutorial for the computation of the Fourier transform and the con-
trast range of Fourier transformed images (dip6ex02.08).

Problem 2.10: Phase and amplitude of the Fourier transform

Interactive tutorial for the meaning and importance of the amplitude and phase
of the Fourier transform of images (dip6ex02.09).

Problem 2.11: *Shift theorem of the Fourier transform

Prove the shift theorem (Theorem 2.3, p. 54) of the Fourier transform.

Problem 2.12: **Fourier transform pairs

Compute the Fourier transform of the following functions in the spatial domain
using the Fourier transform pairs listed in > R5 and > R6 and the basic theorems
of the Fourier transform (Section 2.3.4 and > R4):

) L e
V2Tto P 202

1 x? y2
b) 200y P < 208 2(732,)
c) cos?(kox), sin’®(kox)

1- <1

d Ax)= { el Ixl = (triangle function)
0 sonst

(x — x0)?

552 ) (wave packet)

e) cos(kox)exp (
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With some functions, different ways to compute the Fourier transform are pos-
sible. Carefully list all steps of your solution and indicate, which theorems you
used.

Problem 2.13: *DFT

With this exercise, it is easy to get acquainted with the 1-D discrete Fourier

transform.

1. Compute the basis functions of the DFT for vectors with 4 and 8 elements.

2. Compute the Fourier transform of the vector [4 1 2 117

3. Compute the Fourier transform of the vector [1 4 1 217 to see how the shift
theorem (Theorem 2.3, p. 54) works.

4. Compute the Fourier transform of the vector [4010201 O]T to see how
the discrete similar theorem (Theorem 2.2, p. 53) works.

5. Convolve the vector [4 1 2 l]T with [210 l]T /4 and compute the Fourier
transform of the second vector and of the convolved vectors to see how the
discrete convolution theorem (Theorem 2.4, p. 54) works.

Problem 2.14: **Derivation theorem of the DFT

While almost all theorems of the continuous FT can easily be transferred to
the discrete FT (compare > R4 to > R7), there are problems with the derivation
theorem because the derivation can only be approximated by finite difference
in a discrete space. Prove the theorem for the symmetric finite difference for
the 1-D DFT
(gn+1 = gn-1)/2 —=isin2TV/N) gy

and show why this theorem is an approximation to the derivation theorem of
the continuous FT.

Problem 2.15: **Invariant Fourier transform pairs

Which functions are invariant to the continuous Fourier transform, i. e., do not
change their form except for a scaling factor? (Hint: check > R6 in the reference
part of the book.) Do these invariant Fourier transform pairs have a special
importance for signal processing?

Problem 2.16: **Symmetries of the Fourier transform

Prove the following symmetry relations for Fourier transform pairs:

Spatial domain Fourier domain

Hermitian g(-x) = g* (x) real: g* (k) = g(k)
real g* (x) = g(x) Hermitian: g(—k) = g* (k)
real and even real and even

real and odd imaginary and odd
separable: g(x1)h(x2) separable: g(kl)ﬁ(kz)

rotational symmetric g(|x|) rotational symmetric g(|k|)
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Problem 2.17: ***Radix-3 FFT Algorithm

Does a Radix-3 FFT algorithm have the same order O(N1d N) as Radix-2 and
Radix -4 algorithms? Are more or less numbers of computational steps neces-
sary?

Problem 2.18: ***FFT of real signals

In Section 2.5.7 we discussed a method how the Fourier transform of a real
image can be computed efficiently. Another method is possible. It is based on
the same decomposition principle as the radix-2 FFT algorithm (Section 2.5.2,
Eq. (2.86)). The real vector is partitioned into two. The even-numbered points
are thought to be the real part of a complex vector. From this vector, the Fourier
transform is computed. Show how the Fourier transform of the real vector can
be computed from the Fourier transform of the complex vector. (This method
has the significant advantage that it can also be applied for a single real vector
in contrast to the method described in Section 2.5.7.)

2.7 Further Readings

The classical textbook on the Fourier transform — and still one of the best —
is Bracewell [14]. An excellent source for various transforms is the “Handbook
on Transforms” by Poularikas [158]. For the basics of linear algebra, especially
unitary transforms, the reader is referred to one of the modern textbooks on
linear algebra, e. g., Meyer [139], Anton [6], or Lay [120]. It is still worthwhile to
read the historical article of Cooley and Tukey [27] about the discovery of the
first fast Fourier transform algorithm. The monograph of Blahut [12] covers
a variety of fast algorithms for the Fourier transform. Aho et al. [4] give a
general coverage of the design and analysis of algorithm in a very clear and
understandable way. The extensive textbook of Cormen et al. [28] can also be
recommended. Both textbooks include the FFT.
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3.1 Introduction

Digital image processing can be regarded as a subarea of digital signal
processing. As such, all the methods for taking and analyzing measure-
ments and their errors can also be applied to image processing. In par-
ticular, any measurement we take from images — e.g., the size or the
position of an object or its mean gray value — can only be determined
with a certain precision and is only useful if we can also estimate its
uncertainty. This basic fact, which is well known to any scientist and
engineer, was often neglected in the initial days of image processing. Us-
ing empirical and ill-founded techniques made reliable error estimates
impossible. Fortunately, knowledge in image processing has advanced
considerably. Nowadays, many sound image processing techniques are
available that include reliable error estimates.

In this respect, it is necessary to distinguish two important classes of
errors. The statistical error describes the scatter of the measured value
if one and the same measurement is repeated over and over again as
illustrated in Fig. 3.1. A suitable measure for the width of the distribution
gives the statistical error and its centroid, the mean measured value.

This mean value may, however, be much further off the true value
than given by the statistical error margins. Such a deviation is called a
systematic error. Closely related to the difference between systematic
and statistical errors are the terms precise and accurate. A precise but
inaccurate measurement is encountered when the statistical error is low
but the systematic error is high (Fig. 3.1a). If the reverse is true, i.e., the
statistical error is large and the systematic error is low, the individual
measurements scatter widely but their mean value is close to the true
value (Fig. 3.1b).

It is easy — at least in principle — to get an estimate of the statistical
error by repeating the same measurement many times. But it is much
harder to control systematic errors. They are often related to a lack in
understanding of the measuring setup and procedure. Unknown or un-
controlled parameters influencing the measuring procedure may easily
lead to systematic errors. Typical sources of systematic errors are cali-
bration errors or temperature-dependent changes of a parameter in an
experimental setup without temperature control.
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Figure 3.1: Illustration of a systematic and b statistical error distinguishing preci-
sion and accuracy for the measurement of position in 2-D images. The statistical
error is given by the distribution of the individual measurements, while the sys-
tematic error is the difference between the true value and the average of the
measured values.

In this chapter, we learn how to handle image data as statistical quan-
tities or random variables. We start with the statistical properties of
the measured gray value at an individual sensor element or pixel in Sec-
tion 3.2. Then we can apply the classical concepts of statistics used to
handle point measurements. These techniques are commonly used in
most scientific disciplines. The type of statistics used is also known as
first-order statistics because it considers only the statistics of a single
measuring point.

Image processing operations take the measured gray values to com-
pute new quantities. In the simplest case, only the gray value at a single
point is taken as an input by so-called point operations. In more com-
plex cases, the gray values from many pixels are taken to compute a new
point. In any case, we need to know how the statistical properties, espe-
cially the precision of the computed quantity depends on the precision
of the gray values taken to compute this quantity. In other words, we
need to establish how errors are propagating through image process-
ing operations. Therefore, the topic of Section 3.3 is multiple random
variables and error propagation.

As a last step, we turn to time series of random variables (stochas-
tic processes) and spatial arrays of random variables (random fields) in
Section 3.5. This allows us to discuss random processes in the Fourier
domain.
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3.2 Random Variables

3.2.1 Probability Density Functions and Histograms

Imagine an experimental setup in which we are imaging a certain object.
The measured quantity at a certain point in the image plane (a pixel) is
the irradiance. Because of the statistical nature of the observed process,
each measurement will give a different value.

This means that the observed signal is not characterized by a single
value but rather a probability density function (PDF) f(g). This function
indicates the probability of observing the value g. A measurable quantity
which is governed by a random process is denoted as a random variable,
or short RV.

In the following, we discuss continuous and discrete random vari-
ables and probability functions together. We need discrete probabilities
as only discrete numbers can be handled by a digital computer. Dis-
crete values are obtained after a process called quantization which was
introduced in Section 2.2.4. Many equations in this section contain a
continuous formulation on the left side and their discrete counterparts
on the right side. In the continuous case, f(g)dg gives the non-negative
probability to measure a value within the interval g and g + dg. In
the discrete case, we can only measure a finite number, Q, of values g4
(g = 1,2,...,Q) with probability f;. Normally, the value of a pixel is
stored in one byte so that we can measure Q = 256 different gray val-
ues. As the total probability to observe any value at all is 1 by definition,
the PDF must meet the requirement

* Q
ﬁﬂgMg=1, S fa=1. (3.1)
—o q=1

The integral of the PDF

g q
Fo) = | flgdg,  Fa= X f (3.2)
o0 q'=1

is known as the distribution function. Because the PDF is a non-negative
function, the distribution function increases monotonically from O to 1.

Generally, the probability distribution is not known a priori. Rather
it is estimated from measurements. If the observed process is homoge-
neous, that is, if it does not depend on the position of the pixel in the
image, there is a simple way to estimate the PDF using a histogram.

A histogram of an image is a list (vector) that contains one element
for each quantization level. Each element contains the number of pixels
whose gray value corresponds to the index of the element. Histograms
can be calculated easily for data of any dimension. First we set the whole
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histogram vector to zero. Then we scan each pixel of the image, match
its gray value to an index in the list, and increment the corresponding
element of the list by one. The actual scanning algorithm depends on
how the image is stored.

An estimate of the probability density function can also be obtained
for image data with higher resolution, for instance 16-bit images or
floating-point images. Then the range of possible values is partitioned
into Q equally wide bins. The value associated with the bin is the cen-
ter of the bin, whereas we take the values in between the bins to decide
which bin is to be incremented. If we do not make this distinction, values
computed from the histogram, such as mean values, are biased.

3.2.2 Mean, Variance, and Moments

The two basic parameters that describe a RV g are its mean (also known
as the expectation value) and its variance. The mean u = Eg is defined
as

< Q
H= Jgf(g)dg, H=> gafs (3.3)
Sy q=1

The mean can also be determined without knowing the probability
density function explictly by averaging an infinite number of measure-
ments:

— 00

P
1
u= [ljlm ﬁglg,,. 3.4)

As we cannot take an infinite number of measurements, the determina-
tion of the mean by Eq. (3.4) remains an estimate with a residual uncer-
tainty that depends on the form of the PDF, i.e., the type of the random
process and the number of measurements taken.

The variance 0% = varg = E ((g — u)?) is a measure of the extent to
which the measured values deviate from the mean value:

© Q
o’ = J @G-wifgdg, 2= > (gq-W>fa (3.5)
o q=1

The PDF can be characterized in more detail by quantities similar to
the variance, the central moments of nth order u, = E ((g — u)"):

*° Q
o= [ @-"f@dg, =Y (@0 e GO
SN q=1

The first central moment is by definition zero. The second moment u;
is the variance o2. The third moment u3, the skewness, is a measure
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for the asymmetry of the PDF around the mean value. If the PDF is a
function of even symmetry, f(-(g — u)) = f(g — u), the third and all
higher-order odd moments vanish.

3.2.3 Functions of Random Variables

Any image processing operation changes the signal g at the individual
pixels. In the simplest case, g at each pixel is transformed into h by a
function p: h = p(g). Such a function is known in image processing
as a point operator. Because g is a RV, h will also be a RV and we need
to know its PDF in order to know the statistical properties of the image
after processing it.

It is obvious that the PDF fj of h has same form as the PDF f; of g
if p is a linear function: h = ag + a1 g:

_ fq(9) _ Jqg((h —ap)/ar)
lai| lai|

Sn(h) , (3.7)

where the inverse linear relation g = p~'(h) : g = (h — ag) /a1 is used
to express g as a function of h.

From Eq. (3.7) it is intuitive that in the general case of a nonlinear
function p(g), the slope a; will be replaced by the first derivative p’'(g)
of p(g). Further complications arise if the inverse function has more
than one branch. A simple and important example is the function h = g2
with the two inverse functions g, = ++/h. In such a case, the PDF of h
needs to be added from all branches of the inverse function.

Theorem 3.1 (PDF of the function of a random variable) If f; is the PDF
of the random variable g and p a differentiable function h = p(g), then
the PDF of the random variable h is given by

S
fu(h) = Z fo9(gs)

Slpgol’ (3.8)

where g, are the S real roots of h = p(g).

A monotonic function p has a unique inverse function p~! (h). Then
Eq. (3.8) reduces to
fa(p~t(h)
lp'(p~1 (W) |’
In image processing, the following problem is encountered with re-

spect to probability distributions. We have a signal g with a certain PDF
and want to transform g by a suitable transform into h in such a way

Su(h) = (3.9)
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that h has a specific probability distribution. This is the inverse prob-
lem to what we have discussed so far and it has a surprisingly simple
solution. The transform

h=F;" (F4(9)) (3.10)

converts the fj;(g)-distributed random variable g into the fj (h)-distrib-
uted random variable h. The solution is especially simple for a transfor-
mation to a uniform distribution because then F~! is a constant function
and h = F4(g)).

Now we consider the mean and variance of functions of random vari-
ables. By definition according to Eq. (3.3), the mean of h is

Eh =pup = J hfu(h)dh. (3.11)

We can, however, also express the mean directly in terms of the function
p(g) and the PDF f;(g):

Eh=E(p(g)) = Jv(g)fg(g)dg. (3.12)

Intuitively, you may assume that the mean of h can be computed
from the mean of g: Eh = p(Eg). This is, however, only possible if p is
a linear function. If p(g) is approximated by a polynomial

p(9) =pUg) + ' (Ug) (g —tg) + P (Ug) (g — Hg)?/2+ ...  (3.13)

then
tn ~ pug) + p" (ug)og /2. (3.14)

From this equation we see that u, = p(ug) is only a good approximation

if both the curvature of p(g) and the variance of g are small, i. e., p(g) can

be well approximated by a linear function in an interval [y — 30, u+30].
The first-order estimate of the variance of h is given by

ot = |p'(ue)| o2 (3.15)

This expression is only exact for linear functions p.
The following simple relations for means and variances follow di-
rectly from the discussion above (a is a constant):

E(ag) = aEg, var(ag) = a’varg, varg =E(g®)— (Eg)>. (3.16)
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3.3 Multiple Random Variables

In image processing, we have many random variables and not just one.
Image processing operations compute new values from values at many
pixels. Thus, it is important to study the statistics of multiple RVs. In
this section, we make the first step and discuss how the statistical prop-
erties of multiple RVs and functions of multiple RVs can be handled.

3.3.1 Joint Probability Density Functions

First, we need to consider how the random properties of multiple RVs
can be described. Generally, the random properties of two RVs, g; and
g2, cannot be described by their individual PDFs, f(g;) and f(g2). Itis
rather necessary to define a joint probability density function f(gi1,g2).
Only if the two random variables are independent, i. e., if the probability
that g; takes a certain value does not depend on the value of g,, we
can compute the joint PDF from the individual PDFs, known as marginal
PDFs:

f(91,92) = f4.(91)f9,(g2) < g1,92 independent. (3.17)

For P random variables g,, the random vector g, the joint probabil-
ity density function is f(g1,92,...,gr) = f(g). The P RVs are called
independent if the joint PDF can be written as a product of the marginal
PDFs

P
f@ =]]fs,(gp) <= gpindependent, p =1,...,P. (3.18)
p=1

3.3.2 Covariance and Correlation

The covariance measures to which extent the fluctuations of two RVs,
9gp and gg, are related to each other. In extension of the definition of the
variance in Eq. (3.5), the covariance is defined as

Opq =E <(gp —Hp)(gq - “tﬂ) = E(gpgq) — E(gp)E(gq). (3.19)

For P random variables, the covariances form a P X P symmetric matrix,
the covariance matrix £ = covg. The diagonal of this matrix contains
the variances of the P RVs.

The correlation coefficient relates the covariance to the corresponding
variances:

Ipa where |c| < 1. (3.20)
Op0q

Cpq =
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Two RVs g, and g, are called uncorrelated if the covariance o4 is
zero. Then according to Egs. (3.19) and (3.20) the following relations are
true for uncorrelated RVs:

Opq =0 = cpg =0 <= E(gpgq) = E(gp)E(gq) = gp,gq uncorrelated.
(3.21)
From the last of these conditions and Eq. (3.17), it is evident that inde-
pendent RVs are uncorrelated.

At first glance it appears that only the statistical properties of in-
dependent RVs are easy to handle. Then we only need to consider the
marginal PDFs of the individual variables together with their mean and
variance. Generally, the interrelation of random variations of the vari-
ables as expressed by the covariance matrix X must be considered. Be-
cause the covariance matrix is symmetric, however, we can always find
a coordinate system, i.e., a linear combination of the RVs, in which the
covariance matrix is diagonal and thus the RVs are uncorrelated.

3.3.3 Linear Functions of Multiple Random Variables

In extension to the discussion of functions of a single RV in Section 3.2.3,
we can express the mean of a function of multiple random variables
h=p(g1,92,...,9p) directly from the joint PDF:

Eh = Jv(gl,gz,...,gp)f(g1,gz,...,gp)dgldgz...dgp. (3.22)
From this general relation it follows that the mean of any linear function
P
p=1

is given as the linear combination of the means of the RVs g,:

E (iapg,,) = ia,,E (ap)- (3.24)

p=1 p=1

Note that this is a very general result. We did not assume that the RVs
are independent, and this is not dependent on the type of the PDF. As a
special case Eq. (3.24) includes the simple relations

E(g1 +92) =Eg1 + Eg>, E(g1+a)=Eg +a. (3.25)

The variance of functions of multiple RVs cannot be computed that
easy even in the linear case. Let g be a vector of P RVs, h a vector of
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Q RVs that is a linear combination of the P RVs g, M a Q X P matrix of
coefficients, and a a column vector with Q coefficients. Then

h=Mg+a with E(h)=ME(g)+a (3.26)

in extension to Eq. (3.24). If P = Q, Eq. (3.26) can be interpreted as a
coordinate transformation in a P-dimensional vector space. Therefore it
is not surprising that the symmetric covariance matrix transforms as a
second-order tensor [151]:

cov(h) = M cov(g)M". (3.27)

To illustrate the application of Eq. (3.27), we discuss three examples.

Variance of the mean of RVs. First, we discuss the computation of the
variance of the mean g of P RVs with the same mean and variance o 2.
We assume that the RVs are uncorrelated. Then the matrix M and the
covariance matrix cov g are

g2 0 ... 0

1 0 (72 ... O
Mzﬁ[l,l,l,...,l] and cov(g) = | . ] o =0°l.

0 0 ... o2

Using these expressions in Eq. (3.27) yields

1
2 _ 2
o5 = PO‘ . (3.28)

Thus the variance ag—f is proportional to P~! and the standard deviation

og decreases only with P~1/2. This means that we must take four times
as many measurements in order to double the precision of the measure-
ment of the mean. This is not the case for correlated RVs. If the RVs are
fully correlated (cpq = 1, 0pq = 0°%), according to Eq. (3.27), the variance
of the mean is equal to the variance of the individual RVs. In this case it
is not possible to reduce the variance by averaging.

Variance of the sum of uncorrelated ZRVs with unequal variances.
In a slight variation, we take P uncorrelated RVs with unequal variances
05 and compute the variance of the sum of the RVs. From Eq. (3.25), we
know already that the mean of the sum is equal to the sum of the means
(even for correlated RVs). Similar as for the previous example, it can be
shown that for uncorrelated RVs the variance of the sum is also the sum

of the individual variances:

P P

var > g, = > vargp. (3.29)
p=1 p=1
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Linear Combinations of multiple RVs. As a second example we take
Q RVs h, that are a linear combination of the P uncorrelated RVs g,
with equal variance o2:

hg=alg. (3.30)

Then the vectors a,g form the rows of the Q x P matrix M in Eq. (3.26)
and the covariance matrix of h results according to Eq. (3.27) in

aial aiaz . a?aQ
) . ,| @42 aax ... aaq

cov(h) =0°MM" =0 ) ) . ) . (3.31)
alTaQ agaQ . a(TzaQ

From this equation, we can learn two things. First, the variance of the
RV h, is given by agaq, i.e., the sum of the squares of the coefficients

0% (hg) = c*aja,. (3.32)

Second, although the RVs g, are uncorrelated, two RVs h,, and h, are
only uncorrelated if the scalar product of the coefficient vectors, a;,a,, is
zero, i.e., the coefficient vectors are orthogonal. Thus, only orthogonal
transform matrixes M in Eq. (3.26) leave uncorrelated RVs uncorrelated.

For correlated RVs, we can conclude that it is always possible to apply
a suitable transform M to get a set of linear combinations of RVs that
are uncorrelated. This follows from the elementary theorem in linear
algebra: Each symmetric square matrix can be diagonalized by a trans-
form, which is called the principal component transform [16, 217]. The
uncorrelated set of linear combinations constitutes the axis of the prin-
cipal component system and is known as the set of eigenvectors of the
matrix. The eigenvectors meet the condition

cov(h)e, = 0jep. (3.33)

This means that the multiplication of the covariance matrix with the
eigenvector reduces to a multiplication by a scalar. This factor is called
the eigenvalue to the eigenvector e,. For the covariance matrix the pth
eigenvalue is the variance o3 in the direction of the eigenvector e,.

3.3.4 Nonlinear Functions of Multiple Random Variables

The above analysis of the variance for functions of multiple RVs can
be extended to nonlinear functions provided that the function is suffi-
ciently linear around the mean value. As in Section 3.2.3, we expand the
nonlinear function p,4(g) into a Taylor series around the mean value:

P
0
hy =pa(9) ~ pa() + > P4 (g, — 1), (3.34)
v=1ag’”
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We compare this equation with Eq. (3.26) and find that the Q x P matrix
M has to be replaced by the matrix

[ op1 Op1 op1 ]
0g1 0g> = 0gp
j=| %91 0492 ogr |, (3.35)
opo  0pPg po
L 091 092 ' dgr

known as the Jacobian matrix of the transform h = p(g). Thus the
covariance of h is given by

cov(h) = Jcov(g)J'. (3.36)

3.4 Probability Density Functions

In the previous sections, we derived a number of general properties of
random variables without any knowledge about the probability distribu-
tions. In this section, we discuss a number of specific probability density
functions that are of importance for image processing.

As an introduction to handling of PDFs, we discuss the PDFs of func-
tion of multiple RVs. We restrict the discussion to two simple cases.
First, we consider the addition of two RVs. If two RVs g; and g» are
independent, the resulting probability density function of an additive
superposition g = g; + g» is goiven by the convolution integral

po(g) = J po, (W)Pg, (g — W)dh. (3.37)

This general property results from the multiplicative nature of the su-
perposition of probabilities. The probability p,(g) to measure the value
g is the product of the probabilities to measure gy = h and g» = g — h.
The integral in Eq. (3.37) itself is required because we have to consider
all combinations of values that lead to a sum g.

Second, the same procedure can be applied to the multiplication of
two RVs if the multiplication of two variables is transformed into an
addition by applying the logarithm: Ing = In g; + In g>. The PDFs of the
logarithm of an RV can be computed using Eq. (3.9).

3.4.1 Poisson Distribution

First, we consider image acquisition. An imaging sensor element that
is illuminated with a certain irradiance receives within a time interval
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Figure 3.2: Simulation of low-light images with Poisson noise that have collected
maximal a 3, b 10, ¢ 100, and d 1000 electrons. Note the linear intensity wedge
at the bottom of images ¢ and d .

At, the exposure time, on average N electrons by absorption of photons.
Thus the mean rate of photons per unit time A is given by

N

A=—. 3.38

AL (3.38)
Because of the random nature of the stream of photons a different num-
ber of photons arrive during each exposure. A random process in which
we count on average AAt events is known as a Poisson process P(AAt).
It has the discrete probability density distribution

n
P(AAt) . fn = exp(—)\At)%, n=0 (3.39)
with the mean and variance
lu=2AAt and o2 = AAL (3.40)

Simulated low-light images with Poisson noise are shown in Fig. 3.2.
For low mean values, the Poisson PDF is skewed with a longer tail towards
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Figure 3.3: a Poisson PDFs P (u) for mean values p of 3, 10, 100, and 1000. The
x axis is normalized by the mean: the mean value is one; P(AAt) is multiplied
by o~/21t; b Discrete binomial PDF B(8,1/2) with a mean of 4 and variance of
2 and the corresponding normal PDF N (4, 2).

higher values (Fig. 3.3a). But even for a moderate mean (100), the density
function is already surprisingly symmetric.

A typical CCD image sensor element (Section 1.7.1, > R2) collects in
the order of 10000 or more electrons that are generated by absorbed
photons. Thus the standard deviation of the number of collected elec-
trons is 100 or 1%. From this figure, we can conclude that even a perfect
image sensor element that introduces no additional electronic noise will
show a considerable noise level just by the underlying Poisson process.

The Poisson process has the following important properties:

1. The standard deviation o is not constant but is equal to the square
root of the number of events. Therefore the noise level is signal-
dependent.

2. It can be shown that nonoverlapping exposures are statistically in-
dependent events [151, Section. 3.4]. This means that we can take
images captured with the same sensor at different times as indepen-
dent RVs.

3. The Poisson process is additive: the sum of two independent Poisson-
distributed RVs with the means p; and p» is also Poisson distributed
with the mean and variance u; + uo.

3.4.2 Normal and Binomial Distributions

Many processes with continuous RVs can adequately be described by the
normal or Gaussian probability density N (u, o) with the mean u and the
variance o2

1
N(u,0): f(g) = N

202

2
exp (—(gu)> . (3.41)
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Figure 3.4: Bivariate normal densities: a correlated RVs with o? = 03 = 1, and
112 = —0.5; b isotropic uncorrelated RVs with variances o? = o = 1.

From Eq. (3.41) we can see that the normal distribution is completely
described by the mean and the variance.

For discrete analogue to the normal distribution is the binomial dis-
tribution B(Q, p)

S pi(1-p)%9, 0<qg<Q. (3.42)

BQ,p): fq= 2 —q)!

The natural number Q denotes the number of possible outcomes and
the parameter p €]0, 1[ determines together with Q the mean and the
variance:

p=Qp and o%=Qp(l-p). (3.43)

Even for moderate Q, the binomial distribution comes very close to the
Gaussian distribution as illustrated in Fig. 3.3b.

In extension to Eq. (3.41), the joint normal PDF N (u,X) for multiple
RVs, i.e., the random vector g with the mean p and the covariance matrix
2 is given by

R S (g-w'=g-mw
1@ = Gt g o0 (S

N(p,2): > . (3.44)

At first glance this expression looks horribly complex. It is not. We
must just consider that the symmetric covariance matrix becomes a di-
agonal matrix by rotation into its principle-axis system. Then the joint
normal density function becomes a separable function

gy —up)2>

P
—— e
(2mop)l/? ( 207

fg) =11

p=1

(3.45)

with the variances 05 along the principle axes (Fig. 3.4a) and the com-
ponents g,, are independent RVs.
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For uncorrelated RVs with equal variance o2, the N (u, C) distribution
reduces to the isotropic normal PDF N (u, o) (Fig. 3.4b):

SRR S LT
N(p,0): f(g)—(ZTrO_Z)P/ZEXp< 552 ) (3.46)

3.4.3 Central Limit Theorem

The central importance of the normal distribution stems from the cen-
tral limit theorem (Theorem 2.6, p. 56), which we discussed with respect
to cascaded convolution in Section 2.3.4. Here we emphasize its signif-
icance for RVs in image processing. The central limit theorem states
that under conditions that are almost ever met for image processing ap-
plications the PDF of a sum of RVs tends to a normal distribution. As
we discussed in Section 3.3, in image processing weighted sums from
many values are often computed. Consequently, these combined vari-
ables have a normal PDF.

3.4.4 Other Distributions

Despite the significance of the normal distribution, other probability den-
sity functions also play a certain role for image processing. They occur
when RVs are combined by nonlinear functions.

As a first example, we discuss the conversion from Cartesian to polar
coordinates. We take the random vector g = [gl,gz]T with independent
N (0, o)-distributed components. Then it can be shown [151, Section 6.3]
that the magnitude of this vector r = (g%,g%)” 2 and the polar angle
¢ = arctan(gy/g:) are independent random variables. The magnitude
has a Rayleigh density

¥ 72
R(o): f(r)= Fexp <_W> for >0 (3.47)
with the mean and variance
ur = oyJm/2 and of = 024_7”, (3.48)
and the angle ¢ has a uniform density
1
f(p) = P (3.49)

In generalization of the Rayleigh density, we consider the magnitude
of a P dimensional vector. It has a chi density with P degrees of freedom

2yP-1

XP o) fN) = S5mar prayo?

2
exp (—27;2> for >0 (3.50)
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Figure 3.5: a Chi density for 2 (Rayleigh density), 3 (Maxwell density), and higher
degrees of freedom as indicated; b chi-square density in a normalized plot (mean
at one) with degrees of freedom as indicated.

with the mean

B ﬁF(P/2+1/2)
Hy = O T(P/2) oyP-1/2 for P>1 (3.51)

and variance
of=0°P— i ~0?/2 for P> 1. (3.52)

The mean of the chi density increases with the square root of P while the
variance is almost constant. For large degrees of freedom, the density
quickly approaches the normal density N(o+/P/2 — 1/2, o' /~/2) (Fig. 3.5a).

The PDF of the square of the magnitude of the vector has a differ-
ent PDF because squaring is a nonlinear function (Section 3.2.3). Using
Theorem 3.1 the PDF, known as the chi-square density with P degrees of
freedom, can be computed as

1,-P/271

2 : = SPI2T (Do) P
X(P,o): f(r)= 2PI2T(P/2)0P

exp (—#) for >0 (3.53)

with the mean and variance
_ 2 2 _ o, 4
Hy2 = 0°P and Oy = 20°P. (3.54)

The sum of squares of RVs is of special importance to obtain the error
in the estimation of the sample variance

P 14
1
- = _ =2 : _
P_1 El (gp—9)° with g= El 9p- (3.55)

Papoulis [151, Section 8.2] shows that the normalized sample variance

(P—1)s2 i(gp ) (3.56)
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Figure 3.6: Noise variance as a function of the digital gray value for a Pixelfly
QE from PCO with Sony interline CCD ICX285AL, 12 Bit, 0y = 2.2 (8¢” ) and b
Basler A602f with Micron MT9V403 CMOS, 8 Bit, oy = 0.61 (91 e~ ) [92].

has a chi-square density with P — 1 degrees of freedom. Thus the mean
of the sample variance is o2 (unbiased estimate) and the variance is
204/(P —1). For low degrees of freedom, the chi-square density shows
significant deviations from the normal density (Fig. 3.5b). For more than
30 degrees of freedom the density is in good approximation normally
distributed. A reliable estimate of the variance requires many measure-
ments. For P = 100, the relative standard deviation of the variance is
still about 20% (for the standard deviation of the standard deviation it
is half, 10 %).

3.4.5 Noise Model for Image Sensors

After the detailed discussion on random variables, we can now conclude
with a simple noise model for an image sensor. In Section 3.4.1 we saw
that the photo signal for a single pixel is Poisson distributed. Except for
very low-level imaging conditions, where only a few electrons are col-
lected per sensor element, the Poisson distribution is well approximated
by a normal distribution N(Q,,/Q.), where Q. is the number of elec-
trons absorbed during an exposure. Not every incoming photon causes
the excitation of an electron. The fraction of electrons excited by the
photons irradiating onto the sensor element (Q,) is known as quantum
efficiency n:
_ Qe
Qp’
The electronic circuits add a number of other noise sources. For
practical purposes, it is only important to know that these noise sources
are normal distributed and independent of the photon noise. Therefore

n (3.57)
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the total number of generated charge units and their variances are
Q=Qo+Q. and 0} = 0§, + 05, (3.58)

We assume that the electronic circuits are linear. Therefore the resulting
digital signal g is given by
g = KQ. (3.59)

The conversion factor K is dimensionless and expresses the entire ampli-
fication of the signal in bits/charge unit. The variance of the digital signal
is easy to compute by using the rules of error propagation (Egs. (3.15)
and (3.29)), the fact that 05, = Q. (3.40), and (3.59):

o5 = K*04, +K?05, = 0§ +Kg. (3.60)

Equation (3.60) predicts a linear increase of the variance with the digi-
tal signal g. Measurements generally show a good agreement with this
simple model (Fig. 3.6). Interestingly, noise has a benefit here. The con-
version factor K can be determined from the Ug (g) relation without
knowing any detail about the electronic circuits.

3.5 Stochastic Processes and Random Fields

The statistics developed so far do not consider the spatial and temporal rela-
tions between the points of a multidimensional signal. If we want to analyze
the content of images statistically, we must consider the whole image as a sta-
tistical quantity, known as a random field for spatial data and as a stochastic
process for time series.

In case of an M X N image, a random field consists of an M x N matrix whose
elements are random variables. This means that a joint probability density
function has MN variables. The mean of a random field is then given as a sum
over all possible states g:

QMN

Gmn = 2. f1(G)Gy. (3.61)
q=1

If we have Q quantization levels, each pixel can take Q different states. In com-
bination of all M x N pixels we end up with QN states G,. This is a horrifying
concept, rendering itself useless because of the combinatory explosion of pos-
sible states. Thus we have to find simpler concepts to treat multidimensional
signals as random fields. In this section, we will approach this problem in a
practical way.

We start by estimating the mean and variance of a random field. We can do that
in the same way as for a single value (Eq. (3.55)), by taking the mean G, of P
measurements under the same conditions and computing the average as

1 P
G==>Gp. (3.62)
p=1

|
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This type of averaging is known as an ensemble average. The estimate of the
variance, the sample variance, is given by
p
1 _\2
St=—"->(G,-G) . (3.63)
pir s (6 6)

At this stage, we know already the mean and variance at each pixel in the im-
age. From these values we can make a number of interesting conclusions. We
can study the uniformity of both quantities under given conditions such as a
constant illumination level.

3.5.1 Correlation and Covariance Functions

In a second step, we now relate the gray values at different positions in the
images with each other. One measure for the correlation of the gray values is
the mean for the product of the gray values at two positions, the autocorrelation
function

Rggm,m;m',n') = GunGm'n' - (3.64)
As in Egs. (3.62) and (3.63), an ensemble mean is taken.

The autocorrelation function is not of much use if an image contains a deter-
ministic part with additive zero-mean noise

G =G+N, with G =G and N =0. (3.65)

Then it is more useful to subtract the mean so that the properties of the random
part in the signal are adequately characterized:

Cgg(m,n; m',n’) = (Gmn — Gmn) (Gmn' — Grn’). (3.66)

This function is called the autocovariance function. For zero shift (m = m’
and n = n') it gives the variance at the pixel [m, n]T, at all other shifts the
covariance, which was introduced in Section 3.3.2, Eq. (3.19). New here is that
the autocovariance function includes the spatial relations between the different
points in the image. If the autocovariance is zero, the random properties of the
corresponding points are uncorrelated.

The autocovariance function as defined in Eq. (3.66) is still awkward because it
is four-dimensional. Therefore even this statistic is only of use for a restricted
number of shifts, e.g., short distances, because we suspect that the random
properties of distant points are uncorrelated.

Things become easier if the statistics do not explicitly depend on the position of
the points. This is called a homogeneous random field. Then the autocovariance
function becomes shift invariant:

Coggim+k,n+Lm +kn" +1)
= Cyggim,n;m’,n’)

Cgg(m —m’',n—-n’;0,0)

Cyq(0,0;m" —m,n’ —n).

(3.67)

The last two identities are obtained when we set (k,l) = (-m’, —n’) and (k, 1) =
(-m, —n). This also means that the variance of the noise Cy,4(m,n;m,n) no
longer depends on the position in the image but is equal at all points.
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Because the autocorrelation function depends only on the distance between
points, it reduces from a four- to a two-dimensional function. Fortunately, many
stochastic processes are homogeneous. Because of the shift invariance, the
autocovariance function for a homogeneous random field can be estimated by
spatial averaging:

M-1 N-1

1 - -
W . % (Gm’n’ - Gm’n’)(Gm’+m,n’+n - Gm’+m,n’+n)- (3-68)

Cyg(m,n) =
Generally, it is not certain that spatial averaging leads to the same mean as the
ensemble mean. A random field that meets this criterion is called ergodic.
Another difficulty concerns indexing. As soon as (m,n) # (0,0), the indices run
over the range of the matrix. We then have to consider the periodic extension
of the matrix, as discussed in Section 2.3.4. This is known as cyclic correlation.
Now we illustrate the meaning of the autocovariance function. We consider an
image that contains a deterministic part plus zero-mean homogeneous noise,
see Eq. (3.65). Let us further assume that all points are statistically independent.
Then the mean is the deterministic part and the autocovariance vanishes except
for zero shift, i.e., for a zero pixel distance:

Cgg = 0P or Cgg(m,n) = 08 n. (3.69)

For zero shift, the autocovariance is equal to the variance of the noise. In this
way, we can examine whether the individual image points are statistically un-
correlated. This is of importance because the degree of correlation between the
image points determines the statistical properties of image processing opera-
tions as discussed in Section 3.3.3.

In a similar manner to correlating one image with itself, we can correlate two
different images G and H with each other. These could be either images from
different scenes or images of a dynamic scene taken at different times. By
analogy to Eq. (3.68), the cross-correlation function and cross-covariance function
are defined as

M-1 N-1

1
Rgn(m,n) = MN Z Z Gwn' Hm +mm +n (3.70)
m’'=0 n'=0
M-1 N-1

Z Z (G — Gm’n’)(Hm+m’,n+n’ _Hm+m’,n+n’)- (3.71)

m'=0 n'=0

Conim,n) = —
gh( ) MN
The cross-correlation operation is very similar to convolution (Section 2.3.4,
>R7). The only difference is the sign of the indices (m’,n’) in the second
term.

3.5.2 Random Fields in Fourier Space

In the previous sections we studied random fields in the spatial domain. Given
the significance of the Fourier transform for image processing (Section 2.3), we
now turn to random fields in the Fourier domain. For the sake of simplicity, we
restrict the discussion here to the 1-D case. All arguments put forward in this
section can, however, be applied analogously in any dimension.
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The Fourier transform requires complex numbers. This constitutes no addi-
tional complications, because the random properties of the real and imaginary
part can be treated separately. The definitions for the mean remains the same,
the definition of the covariance, however, requires a slight change as compared
to Eq. (3.19):

Cpq =F ((gp - Up)*(gq - Uq)) , (3.72)

where * denotes the conjugate complex. This definition ensures that the vari-
ance

Ur%:E((gn_lJp)*(gp_ﬂp)) (3.73)
remains a real number.

The 1-D DFT maps a vector g € CV onto a vector § € CY. The components of g
are given as scalar products with orthonormal base vectors for the vector space
CN (compare Egs. (2.29) and (2.30)):

gv =b, g with b, b, =5, . (3.74)

Thus the complex RVs in Fourier space are nothing else but linear combinations
of the RVs in the spatial domain. If we assume that the RVs in the spatial domain
are uncorrelated with equal variance (homogeneous random field), we arrive at
a far-reaching conclusion. According to Eq. (3.74) the coefficient vectors b,
are orthogonal to each other with a unit square magnitude. Therefore we can
conclude from the discussion about functions of multiple RVs in Section 3.3.3,
especially Eq. (3.32), that the RVs in the Fourier domain remain uncorrelated
and have the same variance as in the spatial domain.

3.5.3 Power Spectrum, Cross-correlation Spectrum, and Coherence

In Section 3.5.1 we learnt that random fields in the space domain are character-
ized by the auto- and the cross-correlation functions. Now we consider random
fields in the Fourier space.

Correlation in the space domain corresponds to multiplication in the Fourier
space with the complex conjugate functions (> R4):

G * G o—s Pyy(k) = G(k)*g (k) (3.75)

and .
G x Ho—e Py (k) = g(k)*h(k). (3.76)

In these equations, correlation is abbreviated with the = symbol, similar to
convolution for which we use the * symbol. For a simpler notation, the spectra
are written as continuous functions. This corresponds to the transition to an
infinitely extended random field (Section 2.3.2, Table 2.1).

The Fourier transform of the autocorrelation function is the power spectrum
Py4. The power spectrum is a real-valued quantity. Its name is related to the fact
that it represents the distribution of power of a physical signal in the Fourier do-
main, i. e., over frequencies and wave numbers, if the signal amplitude squared
is related to the energy of a signal. If the power spectrum is averaged over sev-
eral images, it constitutes a sum of squares of independent random variables.
If the RVs have a normal density, the power spectrum has, according to the
discussion in Section 3.4.4, a chi-square density.
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The autocorrelation function of a field of uncorrelated RVS is zero except at the
origin, i. e., a 5-function (Eq. (3.69)). Therefore, its power spectrum is a constant
(> R7). This type of noise is called white noise.

The Fourier transform of the cross-correlation function is called the cross-corre-
lation spectrum Pgy,. In contrast to the power spectrum, it is a complex quantity.
The real and imaginary parts are termed the co- and quad-spectrum, respec-
tively.

To understand the meaning of the cross-correlation spectrum, it is useful to
define another quantity, the coherence function ®:

|Pgn (k) |*

2 _
k) = PR

(3.77)
Basically, the coherence function contains information on the similarity of two
images. We illustrate this by assuming that the image H is a shifted copy of the
image G: h(k) = g(k) exp(—ikx;). In this case, the coherence function is one
and the cross-correlation spectrum Pyp, reduces to

Pyn(k) = Pyy(k) exp(—ikx;). (3.78)

Because Py, is a real quantity, we can compute the shift x; between the two
images from the phase factor exp(—ikx;).

If there is no fixed phase relationship of a periodic component between the two
images, then the coherency decreases. If the phase shift is randomly distributed
from image to image in a sequence, the cross-correlation vectors in the complex
plane point in random directions and add up to zero. According to Eq. (3.77),
then also the coherency is zero.

3.6 Exercises

Problem 3.1: Noise in images and image sequences

Interactive simulation of Poisson-distributed noise, additive normal-distributed
noise and multiplicative normal-distributed noise; computation of mean and
variance (dip6ex03.01).

Problem 3.2: **Poisson distribution and normal distribution

An image sensor receives a spatially and temporally constant irradiation. Dur-
ing the exposure time 9 and 100 charge units are generated in the mean. We
further assume that the sensor is ideal, i.e., the electronic circuits produce no
additional noise.

1. Compute the absolute standard deviation and the relative standard deviation
(o /) for both cases

2. How much does the Poisson distribution deviate from the normal distribution
with the same variance?
Answer this question by computing the probability density functions for the
values u — no withn € {-3,-2,-1,0,1, 2, 3}.
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Problem 3.3: *Binomial and normal distribution

The Binomial distribution B(Q, 1/2) converges for increasing Q quickly to the
normal distribution. Check the statement by comparing all values of the bino-
mial distributions B(4,1/2) and B(8,1/2) to the normal distribution with equal
mean and variance.

Problem 3.4: *Uniform distribution

A random variable (RV) has a uniform probability density function (PDF) in the
interval between g and g+Ag. The PDF is zero outside of this interval. Compute
the mean and variance of this RV.

Problem 3.5: **PDFs, mean and variance

Let g; and g» be two uncorrelated RVs with zero mean (u = 0) and variance
02 = 1. Compute the PDF, mean and variance of the following RVs:

1. h=g1+9>

2. h =ag; + b (a and b are deterministic constants)
3. h= g1+ g1

4. h =g}

5. h = /g2 + g% (Magnitude of vector [g1 g2]")

6. h = arctan(g./g1) (Angle of vector [g; gg]T)

Problem 3.6: *Error propagation

Let g be a RV with mean g and variance (ng. The PDF is unknown. Compute, if
possible, the variance and the relative error o, /h of the following RVs h assum-
ing that the variance is small enough so that the nonlinearity of the following
functions is negligible:

1. h=g°
2. h=Jg
3. h=1/g
4. h=l()

Problem 3.7: Central limit theorem

Interactive simulation to illustrate the central limit theorem (dip6ex03.02).

Problem 3.8: **Selection of an image sensor

In Section 3.4.5 we discussed a simple linear noise model for imaging sensors,
which proved worthwhile. You have two cameras at hand with the following
noise characteristics:

CameraA 0¢2=1.0+0.1g
CameraB o2 =2.5+0.025g

Both cameras deliver digital signals with 12-bit resolution. Thus gray values g
between 0 and 4095 can be measured. Both cameras have a quantum efficiency
of 0.5. Which of the two cameras is better suited for the following tasks:
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1. Measurement of high gray values with the best possible relative resolution
2. Measurement of the smallest possible irradiation.

In order to decision correctly, compute the standard deviation at the highest
digital gray value (g = 4095) and at the lowest value (dark image, g = 0). Further

compute the number of photons that are equal to the standard deviation of the
dark image.

Problem 3.9: **Covariance propagation

Aline sensor has five sensor elements. In a first post processing step, the signals
of two neighboring elements are averaged (so called running mean) According
to Section 3.3.3 this corresponds to the linear transform

11000
p_ollo 1100
210011 0|9

00011

Compute the covariance matrix of h assuming that g is a vector with 5 uncor-
related RVs with equal variance o2, Also compute the variance of the mean of
h ((h1 + ho + h3 + hy)/4) and compare it with the variance of the mean of g
(g1 + g2 + g3 + ga + gs)/5). Analyze the results!

3.7 Further Readings

An introduction to random signals is given by Rice [166]. A detailed account of
the theory of probability and random variables can be found in Papoulis [151].
The textbook of Rosenfeld and Kak [174] gives a good introduction to stochastic
processes with respect to image processing. Spectral analysis is discussed in
Marple Jr. [133].
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4 Neighborhood Operations

4.1 Basic Properties and Purpose

4.1.1 Object Recognition and Neighborhood Operations

An analysis of the spatial relations of the gray values in a small neigh-
borhood provides the first clue for the recognition of objects in images.
Let us take a scene containing objects with uniform radiance as a simple
example. If the gray value does not change in a small neighborhood, the
neighborhood lies within an object. If, however, the gray value changes
significantly, an edge of an object crosses the neighborhood. In this way,
we recognize areas of constant gray values and edges.

Just processing individual pixels in an image by point operations does
not provide this type of information. In Chapter 10 we show in detail
that such operations are only useful as an initial step of image process-
ing to correct inhomogeneous and nonlinear responses of the imaging
sensor, to interactively manipulate images for inspection, or to improve
the visual appearance.

A new class of operations is necessary that combines the pixels of a
small neighborhood in an appropriate manner and yields a result that
forms a new image. Operations of this kind belong to the general class of
neighborhood operations. These are the central tools for low-level image
processing. This is why we discuss the possible classes of neighborhood
operations and their properties in this chapter.

The result of any neighborhood operation is still an image. However,
its content has been changed. A properly designed neighborhood oper-
ation to detect edges, for instance, should show bright values at pixels
that belong to an edge of an object while all other pixels — independent
of their gray value — should show low values. This example illustrates
that by the application of a neighborhood operator, information is gen-
erally lost. We can no longer infer the original gray values. This is why
neighborhood operations are also called filters. They extract a certain
feature of interest from an image. The image resulting from a neighbor-
hood operator is therefore also called a feature image.

It is obvious that operations combining neighboring pixels to form a
new image can perform quite different image processing tasks:

¢ Detection of simple local structures such as edges, corners, lines, and
areas of constant gray values (Chapters 12 and 13)

105

B. Jdhne, Digital Image Processing Copyright © 2005 by Springer-Verlag
ISBN 3-540-24035-7 All rights of reproduction in any form reserved.



< start menu
106 4 Neighborhood Operations

e Motion determination (Chapter 14)
e Texture analysis (Chapter 15)

e Reconstruction of images taken with indirect imaging techniques such
as tomography (Chapter 17)

e Restoration of images degraded by defocusing, motion blur, or similar
errors during image acquisition (Chapter 17)

e Correction of disturbances caused by errors in image acquisition or
transmission. Such errors will result in incorrect gray values for a
few individual pixels (Chapter 17)

4.1.2 General Definition

Aneighborhood operator N takes the values of the neighborhood around
a point, performs some operations with them, and writes the result back
on the pixel. This operation is repeated for all points of the signal.

Definition 4.1 (Continuous neighborhood operator) A continuous neigh-
borhood operator maps a multidimensional continuous signal g(x) onto
itself by the following operation

g (x)=N({g(x")},V(x-x') e M) (4.1)
where M is a compact area.

The area M is called mask, window, region of support, or structure
element of the neighborhood operation. For the computation of g’ (x),
the size and shape of M determine the neighborhood operation by spec-
ifying the input values of g in the area M that is shifted with its origin to
the point x. The neighborhood operation N itself is not specified here.
It can be of any type. For symmetry reasons the mask is often symmetric
and has its origin in the symmetry center.

Definition 4.2 (Discrete neighborhood operator) A discrete neighborhood
operator maps an M x N matrix onto itself by the operation

G:m,n =N Gw-mn-n ¥V [ml,n/]T e M), 4.2)
where M is now a discrete set of points.

Expressions equivalent to Def. 4.2 can easily be written for dimensions
other than two. Although Egs. (4.1) and (4.2) do not specify in any way
the type of neighborhood operation that is performed, they still reveal
the common structure of all neighborhood operations.
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4.1.3 Mask Size and Symmetry

The first characteristic of a neighborhood operation is the size of the
neighborhood. The window may be rectangular or of any other form.
We must also specify the position of the pixel relative to the window
that will receive the result of the operation. With regard to symmetry,
the most natural choice is to place the result of the operation at the pixel
in the center of an odd-sized mask of the size (2R + 1) X (2R + 1).

Even-sized masks seem not to be suitable for neighborhood opera-
tions because there is no pixel that lies in the center of the mask. If the
result of the neighborhood operation is simply written back to pixels
that lie between the original pixels in the center of the mask, we can ap-
ply them nevertheless. Thus, the resulting image is shifted by half the
pixel distance into every direction. Because of this shift, image features
computed by even-sized masks should never be combined with original
gray values because this would lead to considerable errors. If we apply
several masks in parallel and combine the resulting feature images, all
masks must be either even-sized or odd-sized into the same direction.
Otherwise, the output lattices do not coincide.

4.1.4 Operator Notation

Itis useful to introduce an operator notation for neighborhood operators.
In this way, complex composite neighbor operations are easily compre-
hensible. All operators will be denoted by calligraphic letters, such as
B,D,H,S. The operator H transforms the image G into the image G':
G’ = 74 G. This notation can be used for continuous and discrete signals
of any dimension and leads to a compact representation-independent no-
tation of signal-processing operations.

Writing the operators one after the other denotes consecutive appli-
cation. The rightmost operator is applied first. An exponent expresses
consecutive application of the same operator

HH .. .H =HP. (4.3)
[ ——

p times

If the operator acts on a single image, the operand, which is to the right
in the equations, can be omitted. In this way, operator equations can
be written without targets. Furthermore, we will use braces in the usual
way to control the order of execution. We can write basic properties of
operators in an easily comprehensible way, e. g.,

commutativity HiH> = HorH,
associativity Hy (HrH3) = (HyHo) Hs (4.4)
distributivity over addition (H; + Ho)H3z = H1Hz + HrHs3
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Other operations such as addition can also be used in this operator
notation. Care must be taken, however, with any nonlinear operation. As
soon as a nonlinear operator is involved, the order in which the operators
are executed must strictly be given.

A simple example for a nonlinear operator is pointwise multiplication
of images, a dyadic point operator. As this operator occurs frequently,
it is denoted by a special symbol, a centered dot (-). This symbol is
required in order to distinguish it from successive application of opera-
tors. The operator expression B(D, - D), for instance, means: apply the
operators D, and D, to the same image, multiply the result pointwise,
and apply the operator B to the product image. Without parentheses the
expression BD,, - D,; would mean: apply the operator D, to the image
and apply the operator D, and B to the same image and then multi-
ply the results point by point. The used operator notation thus gives
monadic operators precedence over dyadic operators. If required for
clarity, a placeholder for an object onto which an operator is acting is
used, denoted by the symbol “:”. With a placeholder, the aforementioned
operator combination is written as B(Dy : - Dy 3).

In the remainder of this chapter we will discuss the two most im-
portant classes of neighborhood operations, linear shift-invariant filters
(Section 4.2) and rank value filters (Section 4.3). An extra section is de-
voted to a special subclass of linear-shift-invariant filters, known as re-
cursive filters (Section 4.5).

4.2 Linear Shift-lnvariant Filters

4.2.1 Discrete Convolution

First we focus on the question as to how we can combine the gray values
of pixels in a small neighborhood.

The elementary combination of the pixels in the window is given by an
operation which multiplies each pixel in the range of the filter mask with
the corresponding weighting factor of the mask, adds up the products,
and writes the sum to the position of the center pixel:

M=

Z R Gm-m' m-n'
m=—r n'=—vr
- . (4.5)
= Z Z hfm”,—n”ngrm”,nJrn”-
m’'=-r n'’'=-r

4 p—
gmn -

In Section 2.3.4, the discrete convolution was defined in Eq. (2.55) as:

M-1 N-1
g"mn = Z Z hww Gm-—m' n-n (4.6)

m'=0 n'=0
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Both definitions are equivalent if we consider the periodicity in the space
domain given by Eq. (2.42). From Eq. (2.42) we infer that negative indices
are equivalent to positive coefficients by the relations

Id-n=YN-n», Y-n—m = GN-nM-m- (4.7)

The restriction of the sum in Eq. (4.5) reflects the fact that the elements of
the matrix H are zero outside the few points of the (2R + 1) x (2R + 1)
filter mask. Thus the latter representation is much more practical and
gives a better comprehension of the filter operation. For example, the
following 3 x 3 filter mask and the M x N matrix H are equivalent

0. -1 0 ... 0 1
1 00 ... 0
0 -1 -2 0 00 ... 00
1 0, -1 |= (4.8)
210 L e
0 00 ... 00
-1 -2 0 ... 0 0

A W-dimensional filter operation can be written with a simplified vec-
tor indexing:

R
In= 2 h-wininw (4.9)

n’=—R

withn = [n,ny,...,nyw], R = [R1,Ry,...,Ry], where g, is an element
of a W-dimensional signal gu, n,....n,- The notation for the sums in this
equation is an abbreviation for

.....

Ry R> Rw

IR S S S 410

‘n’1=—R1 ‘VL{ZI—RZ ‘I’L;VZ—RW

The vectorial indexing introduced here allows writing most of the rela-
tions for signals of arbitrary dimension in a simple way.

4.2.2 Symmetries

With regard to symmetry, we can distinguish two important classes of
filters: even and odd filters with the condition in one or more directions
that

hfm’n = ihmn or hm‘f‘n = ihmn, (4.11)

where the + and — signs stand for even and odd symmetry. From this
definition we can immediately reduce Eq. (4.5) to make the computation
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of one-dimensional filters more efficient:

’
even: g, = hogmn + Z hn (Gmm-n + Gmmn+n’)

r n'=1 (4.12)
odd: gyn = Z hpw (Gmn-n — Gmn+n’)-

n'=1

The sums only run over half of the filter mask, excluding the center
pixel, which must be treated separately because it has no symmetric
counterpart. It can be omitted for the odd filter since the coefficient at
the center pixel is zero according to Eq. (4.11).

In the 2-D case, the equations become more complex because it is
now required to consider the symmetry in each direction separately. A
2-D filter with even symmetry in both directions reduces to

g;fn,n = hOOgnm
'

+ z how Gmmn-n + Gmmn+n')
1

n

hwo(Gm-m'm + Gm+m',n) (4.13)

+
M=

m'=1

+
M=

’
Z ho (Gm-m' n-n' + Gm-m’ n+n’
=1

m=1ln

+9m+m’ m-n + Gm+m’ n+n’)-

2-D filters can have different types of symmetries in different direc-
tions. For example, they can be odd in horizontal and even in vertical
directions. Then

r

g;n,n = Z hon (gm,n—n’ - gm,n+n’)

n=1

all

(4.14)

+

"
z z hm’n’ (gm—m’,n—n’ - gm—m’,anL’
m'=1n'=1

+Im+m’ n-n' — Im+m’ n+n’ ).

The equations for higher dimensions are even more complex [91].

4.2.3 Computation of Convolution

The discrete convolution operation is such an important operation that
it is worth studying it in detail to see how it works. First, we might be
confused by the negative signs of the indices m’ and n’ for either the
mask or the image in Eq. (4.5). This just means that we reflect either the
mask or the image at its symmetry center before we put the mask over
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n n-1n n+l
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SRR m+1 2[] 1] 0

Figure 4.1: Illustration of the discrete convolution operation with a 3 X 3 filter
mask.

the image. We will learn the reason for this reflection in Section 4.2.5. If
we want to calculate the result of the convolution at the point [m, n1t,
we center the reflected mask at this point, perform the convolution, and
write the result back to position [(m,n]" (Fig. 4.1). This operation is
performed for all pixels of the image.

Close to the border of the image, when the filter mask extends over
the edge of the image, we run into difficulties as we are missing some
image points. The theoretically correct way to solve this problem ac-
cording to the periodicity property discussed in Section 2.3.4, especially
equation Eq. (2.42), is to take into account that finite image matrices
must be thought of as being repeated periodically. Consequently, when
we arrive at the left border of the image, we take the missing points from
the right edge of the image. We speak of a cyclic convolution. Only this
type of convolution will reduce to a multiplication in the Fourier space
(Section 2.3).

In practice, this approach is seldom chosen because the periodic rep-
etition is artificial, inherently related to the sampling of the image data
in Fourier space. Instead, we add a border area to the image with half
the width of the filter mask. Into this border area we write zeros or we
extrapolate in one way or another the gray values from the gray values
at the edge of the image. The simplest type of extrapolation is to write
the gray values of the edge pixels into the border area. Although this
approach gives less visual distortion at the edge of the image than cyclic
convolution, we do introduce errors at the edge of the image in a border
area with a width of half the size of the filter mask. If we choose any
type of extrapolation method, the edge pixels receive too much weight.
If we set the border area to zero, we introduce horizontal and vertical
edges at the image border.

In conclusion, no perfect method exists to handle pixels close to
edges correctly with neighborhood operations. In one way or another,
errors are introduced. The only safe way to avoid errors is to ensure that
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Figure 4.2: Image convolution by scanning the convolution mask line by line
over the image. At the shaded pixels the gray value has already been replaced
by the convolution sum. Thus the gray values at the shaded pixels falling within
the filter mask need to be stored in an extra buffer.

objects of interest keep a safe distance from the edge of at least half the
size of the largest mask used to process the image.

Equation (4.5) indicates that none of the calculated gray values G,,,,
will flow into the computation at other neighboring pixels. Thus, if we
want to perform the filter operation in-place, we run into a problem. Let
us assume that we perform the convolution line by line and from left to
right. Then the gray values at all pixel positions above and to the left
of the current pixel are already overwritten by the previously computed
results (Fig. 4.2).

Consequently, we need to store the gray values at these positions in
an appropriate buffer. Efficient algorithms for performing this task are
described in Jahne [91] and Jdhne et al. [96, Vol. 2, Chap. 5].

The number of elements contained in the mask increases consider-
ably with its size and dimension. A W-dimensional mask with a linear
size of R contains R" elements. The higher the dimension, the faster
the number of elements increases with the size of the mask. In higher
dimensions, even small neighborhoods include hundreds or thousands
of elements.

The challenge for efficient computation schemes is to decrease the
number of computations from O (R") to a lower order. This means that
the number of computations is no longer proportional to R" but rather
to a lower power of R. The ultimate goal is to achieve computation
schemes that increase only linearly with the size of the mask (O (R!)) or
that do not depend at all on the size of the mask (O (R?)).

4.2.4 Linearity and Shift Invariance

Linear operators are defined by the principle of superposition.
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Definition 4.3 (Superposition principle) If G and G’ are two W -dimen-
sional complex-valued signals, a and b are two complex-valued scalars,
and 3 is an operator, then the operator is linear if and only if

H(aG+bG)=aHG+bHG. (4.15)

We can generalize Def. 4.3 to the superposition of many inputs:

H (Z&lka) = Zak:i{Gk. (4.16)
k k

The superposition states that we can decompose a complex signal
into simpler components. We can apply a linear operator to these com-
ponents and then compose the resulting response from that of the com-
ponents.

Another important property of an operator is shift invariance (also
known as translation invariance or homogeneity). It means that the re-
sponse of the operator does not depend explicitly on the position in the
image. If we shift an image, the output image is the same but for the shift
applied. We can formulate this property more elegantly if we define a
shift operator ™" S as

" SGmn = Im'-mmn' -n- 4.17)
Then we can define a shift-invariant operator in the following way:

Definition 4.4 (Shift invariance) An operator is shift invariant if and only
if it commutes with the shift operator S:

H™MS ="nSH, (4.18)

From the definition of the convolution operation Egs. (4.5) and (4.9), it
is obvious thatitis both linear and shift invariant. This class of operators
is called linear shift-invariant operators (LSI operators). In the context
of time series, the same property is known as linear time-invariant (LTI).
Note that the shift operator ™" S itself is an LSI operator.

4.2.5 Point Spread Function

The linearity and shift-invariance make it easy to understand the re-
sponse to a convolution operator. As discussed in Section 2.3.1, we can
decompose any discrete image (signal) into its individual points or basis
images ™" P (Eq. (2.10)):

M-1 N-1
G=> > Gun™P. (4.19)

m=0 n=0
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Linearity says that we can apply an operator to each basis image and
then add up the resulting images. Shift invariance says that the response
to each of the point images is the same except for a shift. Thus, if we
know the response to a point image, we can compute the response to
any image.

Consequently, the response to a point image has a special meaning.
It is known as the point spread function (PSF, for time series often de-
noted as impulse response, the response to an impulse). The PSF of a
convolution or LSI operator is identical to its mask:

r

v
p;nn = Z z hom —w Oopm+m’,n+n’ =hmn (4.20)
r

m=-r n'=—

and completely describes a convolution operator in the spatial domain.

The PSF offers another but equivalent view of convolution. The convo-
lution sum in Eq. (4.5) says that each pixel becomes a linear combination
of neighboring pixels. The PSF says that each pixel is spread out into the
neighborhood as given by the PSF.

4.2.6 Transfer Function

In Section 2.3, we discussed that an image can also be represented in
the Fourier domain. This representation is of special importance for lin-
ear filters since the convolution operation reduces to a multiplication in
the Fourier domain according to the convolution theorem (Theorem 2.4,
p. 54).

gxh o—e Ngh, GxH o—e MNGH (4.21)

The factors N and MN result from the definition of the discrete
Fourier transform after Eq. (2.69)b. Therefore we include the factors N
and MN, respectively, into the definition of the transfer function. This
means that in all further equations Nh and MNH is replaced by h and
H, respectively.

The Fourier transform of the convolution mask or PSF is known as the
transfer function (TF) of the linear filter. The transfer function has an
important practical meaning. For each wave number, it gives the factor
by which a periodic structure is multiplied using the filter operation.

Note that this factor is a complex number (Section 2.3.1). Thus a
periodic structure experiences not only a change in the amplitude but
also a phase shift:

g;/t,v = I:Lu,vgu,v = rpexp(ipn) ryexp(ipy)

= mprgexplilen + @y)l,

(4.22)

where the complex numbers are represented in the second part of the
equation with their magnitude and phase as complex exponentials.
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The symmetry of the filter masks, as discussed in Section 4.2.2, sim-
plifies the transfer function considerably. We can then combine the cor-
responding symmetric terms in the Fourier transform of the PSF:

R .
h, = z hy exp <_21T]i]nv> (with h_y = +thy)
n'=- X (4.23)
2mTinv 21inv
o S () o ().
0+n%1 | exp N exp (=

These equations can be further simplified by replacing the discrete
wave number by the scaled continuous wave number

k=2v/N, with —N/2<v<N/2. (4.24)

The scaled wave number k is confined to the interval [—1,1[. A wave
number at the edge of this interval corresponds to the maximal wave
number that meets the sampling theorem (Section 9.2.3).

Using the Euler equation exp(ix) = cos x + isinx, Eq. (4.23) reduces
for 1-D even and odd filters to:

R
even: h(k) =ho+2 > hy cos(n'mk)
! (4.25)
odd: h(k) =-2i > hy sin(n'mk).
n'=1

Correspondingly, a (2R + 1) X (2R + 1) mask with even horizontal and
vertical symmetry results in the transfer function

h(k) = hoo
R 3 R )
+ 2 z hon cos(n'mrky) + 2 z hywocos(m’ttky)
wel miel (4.26)
R R y y
+ 4> > Wy cos(n'ky) cos(m' ko).
m'=1n'=1

Similar equations are valid for other symmetry combinations.

Equations (4.25) and (4.26) are very useful, because they give a straight-
forward relationship between the coefficients of a filter mask and the
transfer function. They will be our main tool to study the properties of
filters for specific image processing tasks in Chapters 11-15.

4.2.7 Further Properties

In this section, we discuss some further properties of convolution oper-
ators that will be useful for image and signal processing.
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Property 4.1 (Commutativity) LSI operators are commutative:
HH =H'H, (4.27)

i. e, the order in which we apply convolution operators to an image does
not matter. This property is easy to prove in the Fourier domain, because
there the operators reduce to a commutative multiplication.

Property 4.2 (Associativity) LSI operators are associative:
H' H' =H. (4.28)

Because LSI operations are associative, we can compose a complex oper-
ator out of simple operators. Likewise, we can try to decompose a given
complex operator into simpler operators. This feature is essential for an
effective implementation of convolution operators. As an example, we
consider the operator

1 4 6 4 1
4 16 24 16 4
6 24 36 24 © (4.29)
4 16 24 16 4
1 4 6 4 1

We need 25 multiplications and 24 additions per pixel with this convo-
lution mask. We can easily verify, however, that we can decompose this
mask into a horizontal and vertical mask:

1 4 6 4 1 1
4 16 24 16 4 4
6 24 36 24 6 |=[14641]%| 6 (4.30)
4 16 24 16 4 4
1 4 6 4 1 1

Applying the two convolutions with the smaller masks one after the
other, we need only 10 multiplications and 8 additions per pixel when
the operation is applied to the entire image. Filter masks which can be
decomposed into one-dimensional masks along the axes are called sep-
arable masks. We will denote one-dimensional operators with an index
indicating the axis. We can then write a separable operator B in a three-
dimensional space:

B = B;ByBx. (4.31)

In case of one-dimensional masks directed in orthogonal directions, the
convolution reduces to an outer product. Separable filters are more effi-
cient the higher the dimension of the space. Let us consider a9 x9 x 9
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filter mask as an example. A direct implementation would cost 729 mul-
tiplications and 728 additions per pixel, while a separable mask of the
same size would need just 27 multiplications and 24 additions, a factor
of about 30 fewer operations.

Property 4.3 (Distributivity over Addition) LSI operators are distribu-
tive over addition:

H +H" =H. (4.32)

Because LSI operators are elements of the same vector space to which
they are applied, we can define addition of the operators by the addition
of the vector elements. Because of this property we can also integrate
operator additions and subtractions into our general operator notation
introduced in Section 4.1.4.

4.2.8 Error Propagation with Filtering

Filters are applied to measured data that show noise. Therefore it is im-
portant to know how the statistical properties of the filtered data can
be inferred from those of the original data. In principle, we solved this
question in Section 3.3.3. The covariance matrix of the linear combina-
tion g’ = Mg of a random vector g is according to Eq. (3.27) given as

cov(g') = Mcov(g)M". (4.33)

Now we need to apply this result to the special case of a convolution.
First, we consider only 1-D signals. We assume that the covariance matrix
of the signal is homogeneous, i.e., depends only on the distance of the
points and not the position itself. Then the variance o2 for all elements
is equal. Furthermore, the values on the off-diagonals are also equal and
the covariance matrix takes the simple form

go (oa] (0]
o_-1 Op (oa} 0?
cov(g) = O-2 O0-1 Oy o1 ... y (4.34)

O-» O0O-1 Oy

where the index indicates the distance between the points and oy =
o?. Generally, the covariance decreases with increasing pixel distance.
Often, only a limited number of covariances o, differ from zero. With
statistically uncorrelated pixels, only o = o2 is nonzero.
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Because the linear combinations described by M have the special
form of a convolution, the matrix has the same form as the homoge-
neous covariance matrix. For a filter with three coefficients M reduces
to

ho h_;y 0 0 0
hi hg h_; O 0
0 hi ho hy O
M = . (4.35)
0 0 h1 ]’l() h—l

0 O 0 hi ho

Apart from edge effects, the matrix multiplications in Eq. (4.33) re-
duce to convolution operations. We introduce the autocovariance vector
o=|[...,0.1,00,01,.. .]T. Then we can write Eq. (4.33) as

0'="hxoxh=0* hxh=0x(hxh), (4.36)

where ~h is the reflected convolution mask: “h,, = h_,. In the last
step, we replaced the convolution by a correlation. The convolution of o
with h « h can be replaced by a correlation, because the autocorrelation
function of a real-valued function is a function of even symmetry.

In the case of uncorrelated data, the autocovariance vector is a delta
function and the autocovariance vector of the noise of the filtered vector
reduces to

o' =0’(h x h). (4.37)

For a filter with R coefficients, now 2R — 1 values of the autocovariance
vector are non-zero. This means that in the filtered signal pixels with a
maximal distance of R — 1 are now correlated with each other.

Because the covariance vector of a convoluted signal can be described
by a correlation, we can also compute the change in the noise spectrum,
i. e., the power spectrum of the noise, caused by a convolution operation.
It is just required to Fourier transform Eq. (4.36) under consideration of
the correlation theorem (> R7). Then we get

o0 =0x(hxh) o— &'k =06k )h(k) \2. (4.38)

This means that the noise spectrum of a convolved signal is given by the
multiplication of the noise spectrum of the input data by the square of
the transfer function of the filter. With Egs. (4.36) and (4.38) we have
everything at hand to compute the changes of the statistical parameters
of a signal (variance, autocovariance matrix, and noise spectrum) caused
by a filter operation. Going back from Eq. (4.38), we can conclude that
Eq. (4.36) is not only valid for 1-D signals but for signals with arbitrary
dimensions.
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Figure 4.3: Illustration of the principle of rank value filters with a 3 X 3 median
filter.

4.3 Rank Value Filters

The considerations on how to combine pixels have resulted in the power-
ful concept of linear shift-invariant systems. Thus we might be tempted
to think that we have learnt all we need to know for this type of image
processing operation. This is not the case. There is another class of
operations which works on a quite different principle.

We might characterize a convolution with a filter mask by weighting
and summing up. Comparing and selecting characterize the class of
operations to combine neighboring pixels we are considering now. Such
a filter is called a rank-value filter. For this we take all the gray values of
the pixels that lie within the filter mask and sort them by ascending gray
value. This sorting is common to all rank value filters. They only differ
by the position in the list from which the gray value is picked out and
written back to the center pixel. The filter operation which selects the
medium value is called the median filter. Figure 4.3 illustrates how the
median filter works. The filters choosing the minimum and maximum
values are denoted as the minimum and maximum filter, respectively.

The median filter is a nonlinear operator. For the sake of simplicity,
we consider a one-dimensional case with a 3-element median filter. It is
easy to find two vectors for which the median filter is not linear. First
we apply the median filter to the sum of two signals. This results in

M(A---0100 ---1+[---0010 ---])=[---0110 ---].

Then we apply the median filter first to the two components before we
add the two results:

M[---0100 ---]1+M[---0010 ---]1=[---0000 ---].

The results of both computations are different. This proves that the
median filter is nonlinear.



< start menu

120 4 Neighborhood Operations

There are a number of significant differences between convolution
filters and rank value filters. Most important, rank value filters belong
to the class of nonlinear filters. Consequently, it is much more diffi-
cult to understand their general properties. As rank value filters do not
perform arithmetic operations but select pixels, we will never run into
rounding problems. These filters map a discrete set of gray values onto
themselves.

4.4 LSI-Filters: Further Properties

4.4.1 Convolution, Linearity, and Shift Invariance

In Section 4.2.4 we saw that a convolution operator is a linear shift invariant
operator. But is the reverse also true that any linear shift-invariant operator is
also a convolution operator? In this section we are going to prove this statement.
From our considerations in Section 4.2.5, we are already familiar with the point
spread function of continuous and discrete operators. Here we introduce the
formal definition of the point spread function for an operator { onto an M x N-
dimensional vector space:

H = 3{°p. (4.39)

Now we can use the linearity Eq. (4.16) and the shift invariance Eq. (4.18) of the
operator H and the definition of the impulse response Eq. (4.39) to calculate
the result of the operator on an arbitrary image G in the space domain

[ M-1 N-1
5'[[ Z Z Im'n m'"’P}} with Eq. (4.16)
mn

m’'=0 n'=0

(g‘[G)mn

[ M-1 N-1
= > D G H™P linearity
mn

| m'=0 n'=0

[[M-1 N-1
= | > D gmwH™MSOP with Eq. (4.17)
mn

| m’'=0 n’=0

[[M-1 N-1
— z Z Gm'n' m'n’ SH OOP:|
mn

| m’'=0 n'=0
[[M-1 N-1
= | > Y gmw™"SH with Eq. (4.39)
| m’'=0 n’=0 mn
M-1 N-1
= Z z Im'n Mm—m’ n—w with Eq. (4.17)
m’'=0 n'=0
M-1 N-1 . ,
= S S Gmemnn mo=m-m
< < m-m’',n-n m’,n n// =n - n/ -
m'’'=0n""=

These calculations prove that a linear shift-invariant operator must necessarily
be a convolution operation in the space domain. There is no other operator
type which is both linear and shift invariant.
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4.4.2 Inverse Operators

Can we invert a filter operation so that we can get back the original image from
a filtered image? This question is significant because degradations such as
image blurring by motion or by defocused optics can also be regarded as filter
operations (Section 7.6.1). If an inverse operator exists and if we know the point
spread function of the degradation, we can reconstruct the original, undisturbed
image. The problem of inverting a filter operation is known as deconvolution or
inverse filtering.

By considering the filter operation in the Fourier domain, we immediately recog-
nize that we can only reconstruct those wave numbers for which the transfer
function of the filter does not vanish. In practice, the condition for inversion
of a filter operation is much more restricted because of the limited quality of
the image signals. If a wave number is attenuated below a critical level, which
depends on the noise and quantization (Section 9.5), it will not be recoverable.
It is obvious that these conditions limit the power of a straightforward inverse
filtering considerably. The problem of inverse filtering is considered further in
Chapter 17.5.

4.4.3 Eigenfunctions

Next we are interested in the question whether special types of images E exist
which are preserved by a linear shift-invariant operator, except for multipli-
cation with a scalar. Intuitively, it is clear that these images have a special
importance for LSI operators. Mathematically speaking, this means

HE = AE. (4.40)

A vector (image) which meets this condition is called an eigenvector (eigenim-
age) or characteristic vector of the operator, the scaling factor A an eigenvalue
or characteristic value of the operator.

In order to find the eigenimages of LSI operators, we discuss the shift opera-
tor S. It is quite obvious that for real images only a trivial eigenimage exists,
namely a constant image. For complex images, however, a whole set of eigenim-
ages exists. We can find it when we consider the shift property of the complex
exponential

YWWmn = exp (27-(11\:[/’@”) ex (21T;]7’LU> , (4.41)
which is given by
kguvy — exp <—%) exp (—%) wryy, (4.42)

The latter equation directly states that the complex exponentials “¥ W are eigen-
functions of the shift operator. The eigenvalues are complex phase factors
which depend on the wave number indices (u, v) and the shift (k,l). When the
shift is one wavelength, (k,l) = (M/u,N/v), the phase factor reduces to 1 as
we would expect.

Now we are curious to learn whether any linear shift-invariant operator has such
a handy set of eigenimages. It turns out that all linear shift-invariant operators
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have the same set of eigenimages. We can prove this statement by referring
to the convolution theorem (Section 2.3, Theorem 2.4, p. 54) which states that
convolution is a point-wise multiplication in the Fourier space. Thus each ele-
ment of the image representation in the Fourier space g, is multiplied by the
complex scalar h,,. Each point in the Fourier space represents a base image,
namely the complex exponential “YW in Eq. (4.41) multiplied with the scalar
Juv- Therefore, the complex exponentials are eigenfunctions of any convolu-
tion operator. The eigenvalues are then the elements of the transfer function,
hyv. In conclusion, we can write

H (Gun W) = My Gup “W. (4.43)

The fact that the eigenfunctions of LSI operators are the basis functions of the
Fourier domain explains why convolution reduces to a multiplication in Fourier
space and underlines the central importance of the Fourier transform for image
processing.

4.5 Recursive Filters

4.5.1 Introduction

As convolution requires many operations, the question arises whether it is pos-
sible or even advantageous to include the already convolved neighboring gray
values into the convolution at the next pixel. In this way, we might be able to do
a convolution with fewer operations. In effect, we are able to perform convolu-
tions with much less computational effort and also more flexibility. However,
these filters, which are called recursive filters, are much more difficult to under-
stand and to handle — especially in the multidimensional case.

For a first impression, we consider a very simple example. The simplest 1-D
recursive filter we can think of has the general form

Gn =0Gn_1+ (1 —)gn. (4.44)

This filter takes the fraction « from the previously calculated value and the frac-
tion 1 — « from the current pixel. Recursive filters, in contrast to nonrecursive
filters, work in a certain direction, in our example from left to right. For time
series, the preferred direction seems natural, as the current state of a signal de-
pends only on previous values. Filters that depend only on the previous values
of the signal are called causal filters. For spatial data, however, no preferred
direction exists. Consequently, we have to search for ways to construct filters
with even and odd symmetry as they are required for image processing from
recursive filters.

With recursive filters, the point spread function is no longer identical to the
filter mask, but must be computed. From Eq. (4.44), we can calculate the point
spread function or impulse response of the filter as the response of the filter to
the discrete delta function (Section 4.2.5)

1 n=0
5n={0 N0 (4.45)
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Figure 4.4: Point spread function of the recursive filter g, = &g,,_; + (1 — ®)gn
forac=1/2andb x=15/16.

Recursively applying Eq. (4.44), we obtain
9.=0, go=1-¢ gi=01-00& ..., Gnp=010-x)ax" (4.46)
This equation shows three typical general properties of recursive filters:

¢ First, the impulse response is infinite (Fig. 4.4), despite the finite number of
coefficients. For |x| < 1 it decreases exponentially but never becomes exactly
zero. In contrast, the impulse response of nonrecursive convolution filters
is always finite. It is equal to the size of the filter mask. Therefore the two
types of filters are sometimes named finite impulse response filters (FIR filter)
and infinite impulse response filters (IIR filter).

¢ FIR filters are always stable. This means that the impulse response is finite.
Then the response of a filter to any finite signal is finite. This is not the
case for IIR filters. The stability of recursive filters depends on the filter co-
efficients. The filter in Eq. (4.44) is unstable for |x| > 1, because then the
impulse response diverges. In the simple case of Eq. (4.44) it is easy to recog-
nize the instability of the filter. Generally, however, it is much more difficult
to analyze the stability of a recursive filter, especially in two dimensions and
higher.

e Any recursive filter can be replaced by a nonrecursive filter, in general with
an infinite-sized mask. Its mask is given by the point spread function of the
recursive filter. The inverse conclusion does not hold. This can be seen by
the very fact that a non-recursive filter is always stable.

4.5.2 Transfer Function, z-Transform, and Stable Response

After this introductory example, we are ready for a more formal discussion of
recursive filters. Recursive filters include results from previous convolutions at
neighboring pixels into the convolution sum and thus become directional. We
discuss here only 1-D recursive filters. The general equation for a filter running
from left to right is

N R
g;L = — Z an”g;’L—n” =+ Z hn/gn,nr_ (447)

n'’=1 n’=-R
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While the neighborhood of the nonrecursive part (coefficients h) is symmetric
around the central point, the recursive part (coefficients a) uses only previously
computed values. Such a recursive filter is called a causal filter.

If we put the recursive part on the left hand side of the equation, we observe
that the recursive filter is equivalent to the following difference equation, also
known as an ARMA(S,R) process (autoregressive moving average process):

s R
> anGnyr = . hwgn-n with ag=1. (4.48)

n'’ =0 n’=-R

The transfer function of such a filter with a recursive and a nonrecursive part
can be computed by applying the discrete Fourier transform (Section 2.3.2) and
making use of the shift theorem (Theorem 2.3, p. 54). Then

S R
9’ (k) D anrexp(—2min’’k) = g(k) >, hy exp(-2min’k). (4.49)

n'’= n'=-R

Thus the transfer function is

R
A > hy exp(—2min’k)
R
gk) S

> ap exp(-2min"k)

n’=0

hk) = (4.50)

The zeros of the numerator and the denominator govern the properties of the
transfer function. Thus, a zero in the nonrecursive part of the transfer function
causes a zero in the transfer function, i. e., vanishing of the corresponding wave
number. A zero in the recursive part causes a pole in the transfer function, i. e.,
an infinite response.

A determination of the zeros and thus a deeper analysis of the transfer function
is not possible from Eq. (4.50). It requires an extension similar to the extension
from real numbers to complex numbers that was used to introduce the Fourier
transform (Section 2.3.2). We observe that the expressions for both the numera-
tor and the denominator are polynomials in the complex exponential exp(21ik)
of the form

an (exp(=2mik))™. (4.51)

S
1M

The complex exponential has a magnitude of one and thus covers the unit circle
in the complex plane. The zeros of the polynomial need not to be located one
the unit circle but can be an arbitrary complex number. Therefore, it is useful
to extend the polynomial so that it covers the whole complex plane. This is
possible with the expression z = v exp(27rik) that describes a circle with the
radius v in the complex plane.

With this extension we obtain a polynomial of the complex number z. As such
we can apply the fundamental law of algebra that states that any polynomial of
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degree N can be factorized into N factors containing the roots or zeros of the
polynomial:

N N
> anz" =anzV[] (1 — Tnz’l) . (4.52)
n=0

With Eq. (4.52) we can factorize the recursive and nonrecursive parts of the
polynomials in the transfer function into the following products:

s s s
Danz " = z¥ Y aswz? = [[(1-dnz!
n=0 n'=0 n=1
R 2R 2R (4.53)
D hpz ™ = zRY hppwzV = hgzR[] (1-cuz).
n=-R n’'=0 n=1

With z = exp(2mrik) the transfer function can finally be written as

2R
[Ta-cwzh

h(z) = h_gzR A . (4.54)
[T0—-dwz
n'’=1

Each of the factors ¢,y and d,,+ is a zero of the corresponding polynomial (z =
Cw Or Z =dy»

The inclusion of the factor » in the extended transfer function results in an
extension of the Fourier transform, the z-transform, which is defined as

> gnz ™ (4.55)

N=—0

The z-transform of the series g, can be regarded as the Fourier transform of
the series g, v~ [126]. The z-transform is the key mathematical tool to under-
stand 1-D recursive filters. It is the discrete analogue to the Laplace transform.
Detailed accounts of the z-transform are given by Oppenheim and Schafer [150]
and Poularikas [158]; the 2-D z-transform is discussed by Lim [126].

Now we analyze the transfer function in more detail. The factorization of the
transfer function is a significant advantage because each factor can be regarded
as an individual filter. Thus each recursive filter can be decomposed into a
cascade of simple recursive filters. As the factors are all of the form

fa(k) =1 — dy exp(—2mrik) (4.56)

and the impulse response of the filter must be real, the transfer function must
be Hermitian, that is, f(—k) = f*(k). This can only be the case when either the
zero d,, is real or a pair of factors exists with complex-conjugate zeros. This
condition gives rise to two basic types of recursive filters, the relaxation filter
and the resonance filter that are discussed in detail in Sections 4.5.5 and 4.5.6.
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4.5.3 Higher-Dimensional Recursive Filters

Recursive filters can also be defined in higher dimensions with the same type of
equation as in Eq. (4.47); also the transfer function and z-transform of higher-
dimensional recursive filters can be written in the very same way as in Eq. (4.50).
However, it is generally not possible to factorize the z-transform as in Eq. (4.54)
[126]. From Eq. (4.54) we can immediately conclude that it will be possible to
factorize a separable recursive filter because then the higher-dimensional poly-
nomials can be factorized into 1-D polynomials. Given these inherent mathe-
matical difficulties of higher-dimensional recursive filters, we will restrict the
further discussion on 1-D recursive filters.

4.5.4 Symmetric Recursive Filtering

While a filter that uses only previous data is natural and useful for real-time
processing of time series, it makes little sense for spatial data. There is no
“before” and “after” in spatial data. Even worse is the signal-dependent spatial
shift (delay) associated with recursive filters.

With a single recursive filter it is impossible to construct a so-called zero-phase
filter with an even transfer function. Thus it is necessary to combine multiple
recursive filters. The combination should either result in a zero-phase filter
suitable for smoothing operations or a derivative filter that shifts the phase by
90°. Thus the transfer function should either be purely real or purely imaginary
(Section 2.3.4).

We start with a 1-D causal recursive filter that has the transfer function
*h(k) = a(k) +ib (k). (4.57)

The superscript “+” denotes that the filter runs in positive coordinate direction.
The transfer function of the same filter but running in the opposite direction has
a similar transfer function. We replace k by —k and note that a(—k) = a(+k)
and b(—k) = —b(k)), because the transfer function of a real PSF is Hermitian
(Section 2.3.4), and obtain

“h(k) = a(k) —ib(k). (4.58)

Thus, only the sign of the imaginary part of the transfer function changes when
the filter direction is reversed.

We now have three possibilities to combine the two transfer functions (Egs. (4.57)
and (4.58)) either into a purely real or imaginary transfer function:

Addition eh(k) = % (*ﬁ(l%) + *ﬁ(}l)) —a(k),
Subtraction ~ °h(k) = % (*PAL(IE) - ‘fl(l})) —ib(k), (4.59)

Multiplication h(k) = *h(k) ~h(k) = a®(k) + b2 (k).

Addition and multiplication (consecutive application) of the left and right run-
ning filter yields filters of even symmetry and a real transfer function, while
subtraction results in a filter of odd symmetry and a purely imaginary transfer
function.
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Figure 4.5: Transfer function of the relaxation filter g, = &g+ + (1 — ®)gn
applied first in forward and then in backward direction for a positive; and b
negative values of « as indicated.

4.5.5 Relaxation Filters
The simple recursive filter discussed in Section 4.5.1
9n = A1gn=1 + hogn with a; = &, hp = (1 — &) (4.60)

and the point spread function

S {(1 —x)x™ n=0 @61)

0 else

is a relaxation filter. The transfer function of the filter running either in forward
or in backward direction is, according to Eq. (4.50) with Eq. (4.60), given by

1 -«

k)=
1 — xexp(Fmrik)

with « e R. (4.62)

The transfer function Eq. (4.62) is complex and can be divided into its real and
imaginary parts as

1 -«

“p (k) = _
(k) 1-2xcostk + ?

[(1 — xcosTTk) Fixsin Trl%] ) (4.63)

After Eq. (4.59), we can then compute the transfer function # for the resulting
symmetric filter if we apply the relaxation filters successively in positive and
negative direction:

e (1 - «)? _ 1
v(k) ="7(k) " 7(k) = 1_20cosTrk + o (1+B)_BCOS1T]E

(4.64)

with

2K 1+B—-1+2B

B=——— and 6x= —75>——

(1 - )2 B
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Figure 4.6: Analog filter for time series. a Black-box model: a signal U; is put into
an unknown system and at the output we measure the signal U,. b A resistor-
capacitor circuit as a simple example of an analog lowpass filter. ¢ Damped
resonance filter consisting of an inductor L, a resistor R, and a capacitor C.

From Eq. (4.61) we can conclude that the relaxation filter is stable if |x| < 1,
which corresponds to B €] —1/2, «[. As already noted, the transfer function is
one for small wave numbers. A Taylor series in k results in

- oa((1+10x + x?)
(1-x)2 12(1 — x2)?

(rk)%. (4.65)

If « is positive, the filter is a low-pass filter (Fig. 4.5a). It can be tuned by
adjusting «. If & is approaching 1, the averaging distance becomes infinite. For
negative «, the filter enhances high wave numbers (Fig. 4.5b).

This filter is the discrete analog to the first-order differential equation y + 1y =
0 describing a relaxation process with the relaxation time T = —At/In «.

An example is the simple resistor-capacitor circuit shown in Fig. 4.6b. The dif-
ferential equation for this filter can be derived from Kirchhoff’s current-sum
law. The current flowing through the resistor from U; to U, must be equal to
the current flowing into the capacitor. Since the current flowing into a capacitor
is proportional to the temporal derivative of the potential U,, we end up with
the first-order differential equation

Ui-U, ,.0U,
R ’Cat'

and the time constant is given by T = RC.

(4.66)

4.5.6 Resonance Filters

The second basic type of a recursive filter that we found from the discussion
of the transfer function in Section 4.5.2 has a pair of complex-conjugate zeros.
Therefore, the transfer function of this filter running in forward or backward
direction is
+5(k) = _ - _ _
(1 — rexp(itrko) exp(Fimrk)) (1 — v exp(—itrko) exp(Firrk))
B 1
1-2r Cos('rrfco) exp(iiTrf() + 712 exp(iZiTrE) |

(4.67)

The second row of the equation shows that this recursive filter has the coeffi-
cients hy = 1, a; = —27 cos(1rkg), and a, = 7?2 so that:

i = Gn + 21 COS(TTK0) Gyt — V2 G pso- (4.68)
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Figure 4.7: a Magnitude and b phase shift of the transfer function of the reso-
nance filter according to Eq. (4.67) for kg = 1/4 and values for v as indicated.
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Figure 4.8: Point spread function of the recursive resonance filter according to
Eq. (4.68) foraky=1/4,v =3/4and b ko =1/4,r = 15/16.

From the transfer function in Eq. (4.67) we conclude that this filter is a bandpass
filter with a passband wave number of +kq (Fig. 4.7). For r = 1 the transfer
function has two poles at k = +kg.

The impulse response of this filter is after [150]

n

——sin[(n + 1)wko] n=0
Noyp = 1 sinTkg ) (4.69)

0 n<0

This means that the filter acts as a damped oscillator. The parameter ko gives
the wave number of the oscillation and the parameter # is the damping constant
(Fig. 4.8). The filter is only stable if < 1.

If we run the filter back and forth, the resulting filter has a real transfer function
$(k) = *5(k) ~5(k) that is given by
Sk = — ! — .
(1 - 27 cos[m(k — ko)1 +72) (1 - 27 cos[mr(k + ko)] + 72)

(4.70)

The transfer function of this filter can be normalized so that its maximal value
becomes 1 in the passband by setting the nonrecursive filter coefficient hy to
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(1 — r2) sin(1rkg). Then we obtain the following modified recursion
g = (1 —=7)sin(1rko) gn + 2¥ cos(TTko) gly=1 — VG- 4.71)

For symmetry reasons, the factors become most simple for a resonance wave
number of ko = 1/2. Then the recursive filter is

Gn =L =7)gn =1 Gnz2 = Gn = 1*(Gn + Gn=2) (4.72)
with the transfer function
(1-72)?

§(k) = —.
$(k) 1+ 74+ 2r2cos(27k)

(4.73)

The maximum response of this filter at k = 1/2 is one and the minimum re-
sponse at k =0 and k = 1is [(1 —72)/(1 +7r?)]>.

This resonance filter is the discrete analog to a linear system governed by the
second-order differential equation 3 + 27y + w3y = 0, the damped harmonic
oscillator such as the LRC circuit in Fig. 4.6c. The circular eigenfrequency wy
and the time constant 7 of a real-world oscillator are related to the parameters
of the discrete oscillator, ¥ and ko by [91]

¥ =exp(—At/T) and I~<0 = woAt/Tr. (4.74)

4.5.7 LSl Filters and System Theory

The last example of the damped oscillator illustrates that there is a close rela-
tionship between discrete filter operations and analog physical systems. Thus,
digital filters model a real-world physical process. They pattern how the cor-
responding system would respond to a given input signal g. Actually, we will
make use of this equivalence in our discussion of image formation in Chap-
ter 7. There we will find that imaging with a homogeneous optical system is
completely described by its point spread function and that the image forma-
tion process can be described by convolution. Optical imaging together with
physical systems such as electrical filters and oscillators of all kinds can thus
be regarded as representing an abstract type of process or system, called a
linear shift-invariant system or short LSI.

This generalization is very useful for image processing, as we can describe
both image formation and image processing as convolution operations with the
same formalism. Moreover, the images observed may originate from a phys-
ical process that can be modeled by a linear shift-invariant system. Then the
method for finding out how the system works can be illustrated using the black-
box model (Fig. 4.6a). The black box means that we do not know the composition
of the system observed or, physically speaking, the laws that govern it. We can
find them out by probing the system with certain signals (input signals) and
watching the response by measuring some other signals (output signals). If it
turns out that the system is linear, it will be described completely by the impulse
response.

Many biological and medical experiments are performed in this way. Biologi-
cal systems are typically so complex that the researchers often stimulate them
with signals and watch for responses in order to find out how they work and to
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construct a model. From this model more detailed research may start to inves-
tigate how the observed system functions might be realized. In this way many
properties of biological visual systems have been discovered. But be careful —
a model is not the reality! It pictures only the aspect that we probed with the
applied signals.

4.6 Exercises

Problem 4.1: General properties of convolution operators

Interactive demonstration of general properties of linear shiftinvariant opera-
tors (dip6ex04.01).

Problem 4.2: *1-D convolution

Examine the following 1-D convolution masks:

a) 1/4[1 2 1]

b) 1/4[10201]
c) 1/16[1234321]
d) 1/2[10 —1]
e) [1 -21]

) [10 -201]

Answer the following questions:

1. Which symmetry do these convolution masks show?

2. Compute the transfer functions. Try to obtain the simplest possible equation
by using trigonometric identities for half and double angles.

3. Check the computed transfer functions by applying the masks to a constant
gray value structure (k = 0)

111111 ...,

a gray value structure with the maximal possible wave number (k = 1)
1 -1 1 -1 1 -1 1
and a step edge
0000011111

Problem 4.3: **2-D convolution

Answer the same questions as in Exercise 4.2 for the following 2-D convolution
masks:

121 1 2 1
wrl242|, il o o o],
N 81 1 2 -1 |
1 21 10 1]
oxlz2 —12 2|, &1 00 o
1 21 10 1
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Check if the masks are separable or can be composed in another way from the
1-D convolution masks of Exercise 4.2. This saves you a lot of computational
work!

Problem 4.4: *Commutativity and associativity of convolution

Show by applying the convolution masks a) and d) from Exercise 4.2 to a step
edge

000O0OO0O11111

that convolution is commutative and associative.

Problem 4.5: *Convolution masks with even number of coefficients

Also for filters with an even number of coefficients (2R), it is possible to define
filters with even and odd symmetry if we imagine the convolution result is put
on an intermediate grid. The convolution mask can be written as

(h-g,...,h-1,h1,..., hg].

The reference part (> R11) gives the equations for the transfer functions of these
masks.

1.

Prove these equations by applying a shift of half a grid distance to the general
equation for the transfer function Eq. (4.23).

. Compute the transfer functions of the two elementary masks [1 1]/2 (mean

of two neighboring points) and [1 — 1] (difference of two neighboring points).

Problem 4.6: ** Manipulations of convolution masks

Examine how the transfer function of a convolution mask with (2R + 1)-coefficients
changes if you change the coefficients in the following way:

1. Complimentary filter

h, =6, —hy
Example: [111]/3 changeto[-12 —1]/3

2. Partial sign change

W hy, n even
" |-h, modd

Example: [1 2 1]/4 changesto [-12 —1]/4

3. Streching

W - hy2 meven
"o n odd

Example [1 2 1]/4 changesto [1 020 1]/4
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Problem 4.7: ***Inverse convolution

Does an inverse operator exist for the following convolution operators?

a) 1/6[141]
b) 1/4[121]
c) 1/3[111]

Are these inverse operators again a convolution operator? (see Section 4.4.2) If
yes, do they have a special structure?

Problem 4.8: **Change of statistics of 1-D signals by convolution

Compute the autocovariance vector of an uncorrelated time series with constant
variance o2 for all elements that have been convolved with the filters a), d), and
e) from Exercise 4.2. Analyze the results, especially for the variance of the
convolved time series.

Problem 4.9: Recursive relaxation filters

Interactive demonstration of recursive relaxation filters (dip6ex04.02).

Problem 4.10: Recursive resonance filters

Interactive demonstration of recursive resonance filters (dip6ex04.03).

Problem 4.11: **Stability of recursive filters

1. Which of the following recursive filters (Section 4.5) are stable?

a) gn=-1/4gy,_1+5/4gn
b) g, =5/49n 1 — 1/49n
c) g, =-1/4g, » +3/4gn
d) gn=-5/4gn_> —1/4gn

Answer this question by computing the point spread function.
2. Compute the transfer functions of these filters.

Problem 4.12: **Physical systems and recursive filters

Physical systems can be regarded as implementations of recursive filters. Com-
pute the point spread function (impulse response) and transfer function of the
following physical systems:

1. A cascaded electric lowpass filter consisting of two stages each with a resistor
R and a capacity C.

2. A spring pendulum with a mass m, a spring constant D (K = Dx) and a
friction coefficient k (K = kdx/dt).

Problem 4.13: ** Bandpass filter

Design a bandpass filter with the following properties:
1. The pass-through wave number should be k = 0.5.
2. The bandwidth of the pass-through range should be adjustable.
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The filter should be implemented both as a recursive and a non-recursive filter.
(Hint: Take the filter [-1 0 2 0 1]/4 as a starting point for the non-recursive
implementation. How can you use this filter to obtain a smaller bandwidth?)

4.7 Further Readings

The classical concepts of filtering of discrete time series, especially recursive
filters and the z transform are discussed in Oppenheim and Schafer [150] and
Proakis and Manolakis [161], 2-D filtering in Lim [126]. A detailed account of
nonlinear filters, especially median filters, is given by Huang [85] and Pitas and
Venetsanopoulos [157].
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5.1 Scale

5.1.1 Introduction

The neighborhood operations discussed in Chapter 4 can only be the
starting point for image analysis. This class of operators can only extract
local features at scales of at most a few pixels distance. It is obvious that
images contain information also at larger scales. To extract object fea-
tures at these larger scales, we need correspondingly larger filter masks.
The use of large masks, however, results in a significant increase in com-
putational costs. If we use a mask of size R" in a W-dimensional image
the number of operations is proportional to R". Thus a doubling of the
scale leads to a four- and eight-fold increase in the number of operations
in 2- and 3-dimensional images, respectively. For a ten times larger scale,
the number of computations increases by a factor of 100 and 1000 for
2- and 3-dimensional images, respectively.

The explosion in computational cost is only the superficial expression
of a problem with deeper roots. We illustrate it with a simple task, the
detection of edges and lines at different resolutions. To this end, we use
the same image row but blur it to different degrees (Fig. 5.1). We define
the corresponding scale as the distance over which the image has been
blurred and analyze the gray value differences over this distance.

We first investigate gray value differences at high resolution, a scale
of just one pixel distance (Fig. 5.1a, b). At this fine scale, the change in
gray values is dominated by the noisy background of the image. Any
detection of gray value changes caused by the contrast between objects
and background is inaccurate and erroneous. The problem is caused by
a scale mismatch: the gray values only vary on larger scales than the
operators used to detect them.

If we take instead a low resolution (Fig. 5.1e, f), the lines are blurred
so much that the contrast has decreased significantlyd. Moreover, two
closely spaced lines in the left part of the signal have merged into one
object at this coarse resolution. Therefore the detection of edges and
lines is suboptimal again. At a resolution comparable to the line width,
however, the line detection seems to be optimal (Fig. 5.1c, d). Noise
is significantly reduced compared to the finest scale (Fig. 5.1a) but the
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Figure 5.1: Lines and edges at a high, c medium, and e low resolution. b, d, and
f Subtraction of neighboring pixels for edge detection for a, c, and e, respectively.

contrast between the line and the background is not yet diminished as
in Fig. 5.1e.

From the discussion of this example we can conclude that the detec-
tion of certain features in an image is optimal at a certain scale. This
scale depends, of course, on the characteristic scales contained in the
object to be detected. Optimal processing of an image thus requires the
representation of an image at different scales. In order to meet this de-
mand, we need a multiscale representation of images. In this chapter, we
will first illuminate the relation between the spatial and wave number
representation of images under this perspective (Section 5.1.2). Then
we will turn to efficient multigrid representations such as the Gaussian
pyramid (Section 5.2.2) and the Laplacian pyramid (Section 5.2.3). Fi-
nally, the scale space is introduced in Section 5.3 as an concept with a
continuous scale parameter. We discuss how a diffusion process can
generate it and describe its basic properties.
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5.1.2 Spatial Versus Wave Number Representation

In Chapter 2 we discussed in detail the representation of images in the
spatial and wave number domain. In this section we will revisit both
representations under the perspective of how to generate a multiscale
representation of an image.

If we represent an image on a grid in the spatial domain, we do not
have any information at all about the wave numbers contained at that
point in the image. We know the position with an accuracy of the grid
constant Ax, but the local wave number at this position may be anywhere
in the range of the possible wave numbers from 0 to MAk = 2TM /Ax.

In the wave number representation, we have the reverse case. Each
pixel in this domain represents one wave number with the highest wave
number resolution possible for the given image size. But any positional
information is lost, as one point in the wave number space represents a
periodic structure that is spread over the whole image.

The above discussion shows that the representation of an image in
either the spatial or wave number domain constitute two opposite ex-
tremes. We can optimize either the spatial or the wave number resolu-
tion but the resolution in the other domain is completely lost. What we
need for a multiscale image representation is a type of joint resolution
that allows for a separation into different wave number ranges (scales)
but still preserves as much spatial resolution as possible.

5.1.3 Windowed Fourier Transform

One way to approach a joint space-wave number representation is the
windowed Fourier transform. As the name says, the Fourier transform
is not applied to the whole image but only to a section of the image that
is formed by multiplying the image with a window function w(x). The
window function has a maximum at x = 0 and decreases monotonically
with | x| towards zero. The maximum of the window function is then put
at each point x of the image to compute a windowed Fourier transform
for each point:

J(x, ko) = Jg(x’)w(x’ — x) exp (—2mikox')) dx’?. (5.1)

The integral in Eq. (5.1) almost looks like a convolution integral (Eq. (2.54),
>R4). To convert it into a convolution integral we observe that w(—k) =
w (k) and rearrange the second part of Eq. (5.1):

w(x' — x) exp (—2mikox’)

= w(x—x")exp (2miko(x — x')) exp (—21wikox)) . (5.2)
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Then we can write Eq. (5.1) as a convolution
J(x, ko) = (g(x) x w(x)exp (2mikox)) exp (—21ikox) . (5.3)

This means that the local Fourier transform corresponds to a convolu-
tion with the complex convolution kernel w (x) exp(2mikox) except for
a phase factor exp(—2mikox). Using the shift theorem (Theorem 2.3,
p. 54, > R4), the transfer function of the convolution kernel can be com-
puted to be

w(x) exp (21mrikgx) o—e w (k — ko). (5.4)

This means that the convolution kernel w (x) exp (2mrikgx) is a bandpass
filter with a peak wave number of kg. The width of the bandpass is
inversely proportional to the width of the window function. In this way,
the spatial and wave number resolutions are interrelated to each other.
As an example, we take a Gaussian window function

2
exp|——=1. 5.5
p ( 202 (5.5)
Its Fourier transform (> R4, > R5), is

1
V2Tt Oy

Consequently, the product of the standard deviations in the space and
wave number domain (0f = 1/(41w02)) is a constant: o20¢ = 1/(4m)).
This fact establishes the classical uncertainty relation (Theorem 2.7, p. 57).
It states that the product of the standard deviations of any Fourier trans-
form pair is larger than or equal to 1/(41r). As the Gaussian window
function reaches the theoretical minimum it is an optimal choice; a bet-
ter wave number resolution cannot be achieved with a given spatial res-
olution.

exp (—21‘(2k20§>. (5.6)

5.2 Multigrid Representations

5.2.1 Introduction

If we want to process signals in different scales, this can be done in the
most efficient way in a multigrid representation. The basic idea is sim-
ple. While the representation of fine scales requires the full resolution,
coarse scales can be represented at lower resolution. This leads to a scale
space with smaller and smaller images as the scale parameter increases.
In the following two sections we will discuss the Gaussian pyramid (Sec-
tion 5.2.2) and the Laplacian pyramid (Section 5.2.3). In this section, we
only discuss the basics of multigrid representations. Optimal multigrid
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smoothing filters are elaborated in Section 11.5 after we got acquainted
with smoothing filters.

These pyramids are examples of multigrid data structures that have
been introduced into digital image processing in the early 1980s and
have led to a tremendous increase in speed of many image processing
algorithms in digital image processing since then.

5.2.2 Gaussian Pyramid

If we want to reduce the size of an image, we cannot just subsample the
image by taking, for example, every second pixel in every second line.
If we did so, we would disregard the sampling theorem (Section 9.2.3).
For example, a structure which is sampled three times per wavelength
in the original image would only be sampled one and a half times in
the subsampled image and thus appear as an aliased pattern as we will
discuss in Section 9.1. Consequently, we must ensure that all structures
that are sampled less than four times per wavelength are suppressed by
an appropriate smoothing filter to ensure a proper subsampled image.
For the generation of the scale space, this means that size reduction
must go hand in hand with appropriate smoothing.

Generally, the requirement for the smoothing filter can be formulated
as

B(k) =0 Vk, > L (5.7)
Yp

where 7, is the subsampling rate in the direction of the pth coordinate.

The combined smoothing and size reduction can be expressed in a
single operator by using the following notation to compute the g + 1th
level of the Gaussian pyramid from the gth level:

G =G, G =38,67. (5.8)

The number behind the ! in the index denotes the subsampling rate. The
Oth level of the pyramid is the original image.

If we repeat the smoothing and subsampling operations iteratively,
we obtain a series of images, which is called the Gaussian pyramid. From
level to level, the resolution decreases by a factor of two; the size of the
images decreases correspondingly. Consequently, we can think of the
series of images as being arranged in the form of a pyramid as illustrated
in Fig. 5.2.

The pyramid does not require much storage space. Generally, if we
consider the formation of a pyramid from a W-dimensional image with
a subsampling factor of two and M pixels in each coordinate direction,
the total number of pixels is given by

2W
2w —1°

MW(1+2LW+22LW+...><MW (5.9)
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Figure 5.2: Gaussian pyramid: a schematic representation, the squares of the
checkerboard corresponding to pixels; b example.

For a two-dimensional image, the whole pyramid needs only 1/3 more
space than the original image for a three-dimensional image only 1/7
more. Likewise, the computation of the pyramid is equally effective.
The same smoothing filter is applied to each level of the pyramid. Thus
the computation of the whole pyramid only needs 4/3 and 8/7 times
more operations than for the first level of a two-dimensional and three-
dimensional image, respectively.

The pyramid brings large scales into the range of local neighbor-
hood operations with small kernels. Moreover, these operations are per-
formed efficiently. Once the pyramid has been computed, we can per-
form neighborhood operations on large scales in the upper levels of the
pyramid — because of the smaller image sizes — much more efficiently
than for finer scales.

The Gaussian pyramid constitutes a series of lowpass-filtered images
in which the cut-off wave numbers decrease by a factor of two (an octave)
from level to level. Thus only the coarser details remain in the smaller
images (Fig. 5.2). Only a few levels of the pyramid are necessary to span
all possible wave numbers. For an N X N image we can compute at most
a pyramid with Id N + 1 levels. The smallest image consists of a single
pixel.
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5.2.3 Laplacian Pyramid

From the Gaussian pyramid, another pyramid type can be derived, the
Laplacian pyramid, which leads to a sequence of bandpass-filtered im-
ages. In contrast to the Fourier transform, the Laplacian pyramid only
leads to a coarse wave number decomposition without a directional de-
composition. All wave numbers, independently of their direction, within
the range of about an octave (factor of two) are contained in one level of
the pyramid.

Because of the coarse wave number resolution, we can preserve a
good spatial resolution. Each level of the pyramid only contains match-
ing scales, which are sampled a few times (two to six) per wavelength. In
this way, the Laplacian pyramid is an efficient data structure well adapted
to the limits of the product of wave number and spatial resolution set
by the uncertainty relation (Section 5.1.3 and Theorem 2.7, p. 57,).

In order to achieve this, we subtract two levels of the Gaussian pyra-
mid. This requires an upsampling of the image at the coarser level. This
operation is performed by an expansion operator 1,. The degree of ex-
pansion or upsampling is denoted by the figure after the t in the index,
in a similar notation as for the reduction operator Eq. (5.8).

The expansion is significantly more difficult than the size reduction
as the missing information must be interpolated. For a size increase
of two in all directions, first every second pixel in each row must be
interpolated and then every second row. Interpolation is discussed in
detail in Section 10.5. With the introduced notation, the generation of
the pth level of the Laplacian pyramid can be written as:

L® - g _ 1o G(p+1), L® = GgP). (5.10)

The Laplacian pyramid is an effective scheme for a bandpass decom-
position of an image. The center wave number is halved from level to
level. The last image of the Laplacian pyramid, L'", is a lowpass-filtered
image G’ containing only the coarsest structures.

The Laplacian pyramid has the significant advantage that the original
image can be reconstructed quickly from the sequence of images in the
Laplacian pyramid by recursively expanding the images and summing
them up. The recursion is the inverse of the recursion in Eq. (5.10). In
a Laplacian pyramid with p + 1 levels, the level p (counting starts with
zero!) is the coarsest level of the Gaussian pyramid. Then the level p — 1
of the Gaussian pyramid can be reconstructed by

GP =P, G¥V=Lr Vi1, GF (5.11)

Note that this is just an inversion of the construction scheme for the
Laplacian pyramid. This means that even if the interpolation algorithms
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Figure 5.3: Construction of the Laplacian pyramid (right column) from the
Gaussian pyramid (left column) by subtracting two consecutive planes of the
Gaussian pyramid.

required to expand the image contain errors, they affect only the Lapla-
cian pyramid and not the reconstruction of the Gaussian pyramid from
the Laplacian pyramid, as the same algorithm is used. The recursion
in Eq. (5.11) is repeated with lower levels until level 0, i.e., the original
image, is reached again. As illustrated in Fig. 5.3, finer and finer details
become visible during the reconstruction process. Because of the pro-
gressive reconstruction of details, the Laplacian pyramid has been used
as a compact scheme for image compression. Nowadays, more efficient
schemes are available on the basis of wavelet transforms, but they oper-
ate on principles very similar to those of the Laplacian pyramid [1, 25].

5.2.4 Directio-Pyramidal Decomposition

In multidimensional signals a directional decomposition is as important as a
scale decomposition. Directional decompositions require suitable directional
filters. Ideally, all directional components should add up to the complete image.
A combined decomposition of an image into a pyramid and on each pyramid
level into directional components is known as a directiopyramidal decomposi-
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Figure 5.4: First three planes of a directiopyramidal decomposition of Fig. 5.6a:
the rows shown are planes 0, 1, and 2, the columns L, Ly, L, according to
Egs. (5.13) and (5.14).

tion [88]. Generally, such a decomposition is a difficult filter design problem.
Therefore, we illustrate a directiopyramidal decomposition here only with a
simple and efficient decomposition scheme with two directional components.
The smoothing is performed by separable smoothing filters, one filter that
smoothes only in the x direction (By) and one that smoothes only in the y
direction (B, ): then the next higher level of the Gaussian pyramid is given as in
Eq. (5.8) by

GV =1, B, B, G, (5.12)

The Laplacian pyramid is
L@ = g@_ 1o G+ (5.13)
Then, the two directional components are given by

L;a) =1/2(G?9- 1, g4V — (B, - 'By)G(q)),

5.14
LY =1/2(67- 1, GV + (B, - B,)G'?). O

From Eq. (5.14) it is evident that the two directional components L, and L, add
up to the isotropic Laplacian pyramid: L = Ly + L,. Example images with the
first three levels of a directional decomposition are shown in Fig. 5.4.
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5.3 Scale Spaces

The Gaussian and Laplacian pyramid are effective but rather inflexible multigrid
data structure. From level to level the scale parameter changes by a fixed factor
of two. A finer scale selection is not possible. In this section we discuss a more
general scheme, the scale space that allows a continuous scale parameter.

As we have seen with the example of the windowed Fourier transform in Sec-
tion 5.1.3, the introduction of a characteristic scale adds a new coordinate to
the representation of image data. Besides the spatial resolution, we have a new
parameter that characterizes the current resolution level of the image data. The
scale parameter is denoted by &. A data structure that consists of a sequence
of images with different resolutions is known as a scale space; we write g(x, &)
to indicate the scale space of the image g(x).

Next, in Section 5.3.1, we discuss a physical process, diffusion, that is suitable
for generating a scale space. Then we discuss the general properties of a scale
space in Section 5.3.2.

5.3.1 Scale Generation by Diffusion

The generation of a scale space requires a process that can blur images to a
controllable degree. Diffusion is a transport process that tends to level out con-
centration differences [29]. In physics, diffusion processes govern the transport
of heat, matter, and momentum leading to an ever increasing equalization of
spatial concentration differences. If we identify the time with the scale parame-
ter &, the diffusion process establishes a scale space.

To apply a diffusion process to a multidimensional signal with W dimensions,
we regard the gray value g as the concentration of a chemical species. The
elementary law of diffusion states that the flux density j is directed against the
concentration gradient Vg and proportional to it:

j=-DVg (5.15)

where the constant D is known as the diffusion coefficient. Using the continuity
equation

og .
3t +Vj=0 (5.16)
the diffusion equation is
g—‘? =V(DVg). (5.17)

For the case of a homogeneous diffusion process (D does not depend on the
position), the equation reduces to

22 — DAg (5.18)

where

w
A= > — (5.19)
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is the Laplacian operator. It is easy to show that the general solution to this
equation is equivalent to a convolution with a smoothing mask. To this end, we
perform a spatial Fourier transform which results in

23(k) _

ot —41’D|k|%>g (k) (5.20)

by using Theorem 2.5, p. 55 and reduces the equation to a linear first-order
differential equation with the general solution

gk, t) = exp(—4m°DIk|*t)§(k,0), (5.21)

where g (k,0) is the Fourier transformed image at time zero.
Multiplication of the image in the Fourier space with the Gaussian function in

Eq. (5.21) is equivalent to a convolution with the same function but of reciprocal
width (Theorem 2.4, p. 54, > R4 and > R6). Thus,

2
gx,t) = WEXP (—25‘;(”) * g(x,0) (5.22)
with
o(t) =+2Dt. (5.23)

Equation (5.23) shows that the degree of smoothing expressed by the standard
deviation ¢ increases only with the square root of the time. Therefore we set
the scale parameter & equal to the square of the standard deviation:

£ =2Dt. (5.24)

It is important to note that this formulation of the scale space is valid for im-
ages of any dimension. It could also be extended to image sequences. The
scale parameter is not identical to the time although we used a physical diffu-
sion process that proceeds with time to derive it. If we compute a scale space
representation of an image sequence, it is useful to scale the time coordinate
with a characteristic velocity 1 so that it has the same dimension as the spatial
coordinates:

t" = upt. (5.25)

We add this coordinate to the spatial coordinates and get a new coordinate
vector
]T

X = [x1, X2, upt or x= [xl,xz,x3,u0t]T. (5.26)

In the same way, we extend the wave number vector by a scaled frequency:
k = [ki,ka,v/uol" or k=T[ki,ka, ks, v/ugl". (5.27)

With Egs. (5.26) and (5.27) all equations derived above, e.g., Egs. (5.21) and
(5.22), can also be applied to scale spaces of image sequences. For discrete
spaces, of course, no such scaling is required. It is automatically fixed by the
spatial and temporal sampling intervals: uy = Ax/At.

As an illustration, Fig. 5.5 shows the scale space of some characteristic one-
dimensional signals: noisy edges and lines, a periodic pattern, a random signal,
and a row of an image. These examples nicely demonstrate a general property
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A 1
11}

Figure 5.5: Scale space of some one-dimensional signals: a edges and lines; b a
periodic pattern; ¢ a random signal; d row 10 from the image shown in Fig. 11.6a.
The vertical coordinate is the scale parameter E.

of scale spaces. With increasing scale parameter &, the signals become increas-
ingly blurred, more and more details are lost. This feature can be most easily
seen by the transfer function of the scale space representation in Eq. (5.21).
The transfer function is always positive and monotonically decreasing with the
increasing scale parameter & for all wave numbers. This means that no struc-
ture is amplified. All structures are attenuated with increasing &, and smaller
structures always faster than coarser structures. In the limit of & — oo the scale
space converges to a constant image with the mean gray value. A certain feature
exists only over a certain scale range. In Fig. 5.5a we can observe that edges and
lines disappear and two objects merge into one.

For two-dimensional images, a continuous representation of the scale space
would give a three-dimensional data structure. Therefore Fig. 5.6 shows indi-
vidual images for different scale parameters & as indicated.

5.3.2 General Properties of a Scale Space
In this section, we discuss some general properties of scale spaces. More specif-

ically, we want to know what kind of conditions must be met by a filter kernel
generating a scale space. We will discuss two basic requirements. First, no new
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Figure 5.6: Scale space of a two-dimensional image: a original image; b, ¢, and
d at scale parameters o 1, 2, and 4, respectively.

details must be added with increasing scale parameter. From the perspective
of information theory, we may say that the information content in the signal
should continuously decrease with the scale parameter.

The second property is related to the general principle of scale invariance. This
basically means that we can start smoothing the signal at any scale parameter
in the scale space and still obtain the same scale space. Here, we will give
only some basic ideas about these elementary properties and no proofs. For a
detailed treatment of the scale space theory we refer to the recent monograph
on linear scale space theory by Lindeberg [127].

The linear homogenous and isotropic diffusion process has according to Eq. (5.22)
the convolution kernel

2
B(x,&) = % exp (—'2,) (5.28)

and the transfer function Eq. (5.21)
B(k, &) = exp(—4m?|k|?E/2). (5.29)

In these equations, we have replaced the explicit dependence on time by the
scale parameter & using Eq. (5.24). In a representation-independent way, we
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denote the scale space generating operator as
B(E). (5.30)

The information-decreasing property of the scale space with & can be formu-
lated mathematically in different ways. We express it here with the minimum-
maximum principle which states that local extrema must not be enhanced. This
means that the gray value at a local maximum or minimum must not increase
or decrease, respectively. For a diffusion process this is an intuitive property.
For example, in a heat transfer problem, a hot spot must not become hotter or a
cool spot cooler. The Gaussian kernel Eq. (5.28) meets the minimum-maximum
principle.
The second important property of the scale space is related to the scale invari-
ance principle. We want to start the generating process at any scale parameter
and still get the same scale space. More quantitatively, we can formulate this
property as

B(&2)B(&1) = B(&1 + &2). (5.31)

This means that the smoothing of the scale space at the scale & by an operator
with the scale &; is equivalent to the application of the scale space operator
with the scale &, + &, to the original image. Alternatively, we can state that the
representation at the coarser level & can be computed from the representation
at the finer level &, by applying

B(&) = B(& — &1)B(&1) with & > &. (5.32)

From Egs. (5.28) and (5.29) we can easily verify that Eqgs. (5.31) and (5.32) are
true. In mathematics the properties Eqgs. (5.31) and (5.32) are referred to as the
semi-group property.

Conversely, we can ask what scale space generating kernels exist that meet both
the minimum-maximum principle and the semi-group property. The answer to
this question may be surprising. The Gaussian kernel is the only convolution
kernel that meets both these criteria and is in addition isotropic and homoge-
neous [127]. This feature puts the Gaussian convolution kernel and — as we will
see later — its discrete counterpart the binomial kernel into a unique position
for image processing. It will be elaborated in more detail in Section 11.4.

It is always instructive to discuss a counterexample. The most straightforward
smoothing kernel for a W-dimensional image — known as the moving average
— is the box filter

1 Y X
R(x,E) = o 1‘[ ( “’) (5.33)
with the transfer function

i sm(kw§/2
1__[ kw&/2

R(k, %) = (5.34)

This kernel meets neither the minimum-maximum principle nor the semi-group
property. Figure 5.7 compares scale spaces of a periodic signal with varying
wave number generated with a Gaussian and a box kernel. In Fig. 5.7b it becomes
evident that the box kernel does not meet the minimum-maximum principle as
structures decrease until they are completely removed but then appear again.
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a b
Figure 5.7: Scale space of a 1-D signal with varying wave number computed with
a a Gaussian and b box kernel. The scale parameter runs from top to bottom.

5.3.3 Quadratic and Exponential Scale Spaces

Despite the mathematical beauty of scale space generation with a Gaussian con-
volution kernel, this approach has one significant disadvantage. The standard
deviation of the smoothing increases only with the square root of the time, see
Eq. (5.23). Therefore the scale parameter & is only proportional to the square
of the standard deviation. This results in a nonlinear scale coordinate. While
smoothing goes fast for fine scales, it becomes increasingly slower for larger
scales.

There is a simple cure for this problem. We need a diffusion process where
the diffusion constant increases with time. We first discuss a diffusion coeffi-
cient that increases linearly with time. This approach results in the differential
equation

og
T DotAg. (5.35)

A spatial Fourier transform results in
a%(tk) — — 412Dyt k|2 (k). (5.36)

This equation has the general solution
gk, t) = exp(-2m*Dot*|k|*) g (k,0) (5.37)

which is equivalent to a convolution in the spatial domain. Thus,

3 1 |x|2
glx,t) = 21 Dot? exp( NE * g(x,0). (5.38)

From these equations we can write the convolution kernel and transfer function
in the same form as in Egs. (5.28) and (5.29) with the only exception that the
scale parameter

&, = Dot?. (5.39)

Now the standard deviation for the smoothing is proportional to time for a
diffusion process that increases linearly in time. As the scale parameter & is
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proportional to the time squared, we denote this scale space as the quadratic
scale space. This modified scale space still meets the minimum-maximum prin-
ciple and the semi-group property.

For even more accelerated smoothing, we can construct an exponential scale
space, i.e., a scale space where the logarithm of the scale parameter increases
linearly with time. We use a diffusion coefficient that increases exponentially in
time

g9
i Doexp(t/T)Ag. (5.40)

Again, we obtain a convolution kernel and a transfer function as in Egs. (5.28)
and (5.29), now with the scale parameter

&1 =2DoT exp(t/T). (5.41)

5.3.4 Differential Scale Spaces

The interest in a differential scale space stems from the fact that we want to
select optimum scales for processing of features in images. In a differential
scale space, the change of the image with scale is emphasized. We use the
transfer function of the scale space kernel Eq. (5.29) which is also valid for
quadratic and logarithmic scale spaces. The general solution for the scale space
can be written in the Fourier space as

gk, &) = exp(—21?|k|?E)g(k,0). (5.42)
Differentiating this signal with respect to the scale parameter & yields

%’gg) = 212 |k|2 exp(—2m2|k|2E)G(k,0) = —2m2|k|2G(k, E). (5.43)

The multiplication with —|k|? is equivalent to a second-order spatial derivative
(> R4), the Laplacian operator. Thus we can write in the spatial domain

g(x,8 1

Equations (5.43) and (5.44) constitute a basic property of the differential scale
space. The differential scale space is equivalent to a second-order spatial deriva-
tion with the Laplacian operator and thus leads to an isotropic bandpass decom-
position of the image. The transfer function at the scale & is

—212|k|? exp(—21° | k| E). (5.45)

For small wave numbers, the transfer function is proportional to —|k|2. It

reaches a maximum at
2

k2 == 5.46
max = g (5.46)

and then decays exponentially.
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5.3.5 Discrete Scale Spaces

The construction of a discrete scale space requires a discretization of the diffu-
sion equation. We start with a discretization of the one-dimensional diffusion

cauation 09(x,8) _ ,0%9(x,®) (5.47)
o0& ox2 '
The derivatives are replaced by discrete differences in the following way:
09(x,8)  _ g(x, &+ A8) —g(x,8)
0& AE
(5.48)
°9(x,8) _ gx+Ax,8)-29(x,8) +g(x — A, §)
0x? Ax? '

This leads to the following iterative scheme for computing a discrete scale space
with € = DAE/Ax?:

gx,E+AE) =eg(x+Ax,E) + (1 -2€)g(x,&) +€g(x — Ax, &) (5.49)

or written with discrete coordinates (§ — i, x — n)

Hlgn = €'gne + (1 —2€) 'gn + €' gn_1. (5.50)
Lindeberg [127] shows that this iteration results in a discrete scale space that
meets the minimum-maximum principle and the semi-group property if and

only if €<1/4. (5.51)
The limiting case of € = 1/4 leads to the especially simple iteration

g, =1/4'gna +1/2gn +1/4'g,_1. (5.52)

Each step of the scale space computation is given by a spatial smoothing of
the signal with the mask B? = [121]/4. We can also formulate the general
scale space generating operator in Eq. (5.49) using the convolution operator B.
Written in the operator notation introduced in Section 4.1.4, the operator for
one iteration step to generate the discrete scale space is

(1 —-4€)7 +4eB?> with € < 1/4, (5.53)

where 7 denotes the identity operator.

This expression is significant, as it can be extended directly to higher dimen-
sions by replacing B? with a correspondingly higher-dimensional smoothing
operator. The convolution mask B? is the simplest mask in the class of smooth-
ing binomial filters. These filters will be discussed in detail in Section 11.4.
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5.4 Exercises

Problem 5.1: Pyramids

Interactive demonstration of Gaussian and Laplacian pyramids (dip6ex05.01).

Problem 5.2: **Smoothing filters for Gaussian pyramids

The first papers about pyramids from Burt and Adelson [20] and Burt [19] used
smoothing filters with 5 coefficients, e. g., the filters

[14641]/16, [12321]/9.

These filters were first applied in horizontal direction and then in vertical di-

rection.

1. Do these filters meet the condition expressed by Eq. (5.7) that the transfer
function should be zero for k; > 1/2 or k, > 1/2?

2. Is it possible at all that a filter with finite point spread function can meet this
condition exactly?

Problem 5.3: **Construction of the Laplacian pyramid

The Laplacian pyramid could also be constructed according to the following
scheme as an alternative to Eq. (5.10):

L =G"» -BG", G¥*"=1,B6", LV =G".

The smoothed pth level of the Gaussian pyramid is simply subtracted from

itself without applying a downsampling. A downsampling is only applied to

compute the (p + 1)th level of the Gaussian pyramid.

1. Determine the equation that is aquivalent to Eq. (5.11) in order to reconstruct
the Gaussian pyramid from the Laplacian pyramid.

2. Do you see any advantage or disadvantage with this scheme as compared to
the scheme described by Egs. (5.10) and (5.11)?

Problem 5.4: ***Pyramid with finer scale resolution

One problem of conventional pyramids is that the size decreasing in every direc-
tion by a fixed factor of two. Some applications call for a finer scale resolution.
How could you generate a pyramid where the size in both directions decreases
not by a factor of two but by a factor of +/2?

(Hint: You need to find a scheme that selects only every second pixel from a
2-D image.)

Problem 5.5: Scale space

Interactive demonstration of various scale spaces and their properties
(dip6ex05.02).
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Problem 5.6: **Discrete scale space with box filters

A discrete scale space should be constructed using box filters (running average)
with increasing filter length. The filter length determines the scale parameter
& = 2R + 1. Answer the following questions:
1. Is the minimum-maximum principle met?
2. Is this scale space scale invariant, i. e., does it meet the semi-group property

R(E1)R(E) = R(& + &2)7

5.5 Further Readings

Multiresolutional image processing developed in the early 1980ies. An excellent
overview of this early work is given by Rosenfeld [173]. Linear scale spaces are
described in detail by the monograph of Lindeberg [127], nonlinear scale spaces
including inhomogeneous and anisotropic diffusion by Weickert [216]. Readers
interested in the recent development of scale space theory are referred to the
proceedings of the international conferences on “Scale-Space”: 1997 [199], 1999
[147], 2001 [108], 2003 [67], and 2005 [109].
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6 Quantitative Visualization

6.1 Introduction

An imaging system collects radiation emitted by objects to make them
visible. The radiation consists of a flow of particles or electromagnetic or
acoustic waves. In classical computer vision scenes and illumination are
taken and analyzed as they are given, but visual systems used in scientific
and industrial applications require a different approach. There, the first
task is to establish the quantitative relation between the object feature
of interest and the emitted radiation. It is the aim of these efforts to
map the object feature of interest with minimum possible distortion of
the collected radiance by other parameters.

Figure 6.1 illustrates that both the incident ray and the ray emit-
ted by the object towards the camera may be influenced by additional
processes. The position of the object can be shifted by refraction of
the emitted ray. Scattering and absorption of the incident and emit-
ted rays lead to an attenuation of the radiant flux that is not caused by
the observed object itself but by the environment, which thus falsifies
the observation. In a proper setup it is important to ensure that these
additional influences are minimized and that the received radiation is
directly related to the object feature of interest. In cases where we do
not have any influence on the illumination or setup, we can still choose
radiation of the most appropriate type and wavelength range.

As illustrated in Sections 1.2 and 6.4, a wealth of phenomena is avail-
able for imaging objects and object features, including self-emission,
induced emission (fluorescence), reflection, refraction, absorption, and
scattering of radiation. These effects depend on the optical properties of
the object material and on the surface structure of the object. Basically,
we can distinguish between surface-related effects caused by disconti-
nuity of optical properties at the surface of objects and volume-related
effects.

It is obvious that the complexity of the procedures for quantitative
visualization strongly depends on the image-processing task. If our goal
is only to make a precise geometrical measurement of the objects, it is
sufficient to set up an illumination in which the objects are uniformly
illuminated and clearly distinguished from the background. In this case,
itis not required that we establish quantitative relations between the ob-
ject features of interest and the radiation emitted towards the camera.
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Object (to be observed)
by reflection, refraction, emission
absorption or scattering

N

Scattering

Absorption

Refraction .
Refraction Scattering
Incident ray Absorption
(from light source)
Emitted ray
(towards camera)
HHlumination path Observation path

Figure 6.1: Schematic illustration of the interaction between radiation and mat-
ter for the purpose of object visualization. The relation between the emitted radi-
ation towards the camera and the object feature can be disturbed by scattering,
absorption, and refraction of the incident and the emitted ray.

If we want to measure certain object features, however, such as density,
temperature, orientation of the surface, or the concentration of a chem-
ical species, we need to know the exact relation between the selected
feature and the emitted radiation. A simple example is the detection
of an object by its color, i.e., the spectral dependency of the reflection
coefficient.

In most applications, however, the relationship between the parame-
ters of interest and the emitted radiation is much less evident. In satellite
images, for example, it is easy to recognize urban areas, forests, rivers,
lakes, and agricultural regions. But by which features do we recognize
them? And, an even more important question, why do they appear the
way they do in the images?

Likewise, in medical research one very general question of image-
based diagnosis is to detect pathological aberrations. A reliable decision
requires a good understanding of the relation between the biological
parameters that define the pathological aberration and their appearance
in the images.

In summary, essentially two questions must be answered for a suc-
cessful setup of an imaging system:

1. How does the object radiance (emitted radiative energy flux per solid
angle) depend on the object parameters of interest and illumination
conditions?
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2. How does the irradiance at the image plane (radiative energy flux den-
sity) captured by the optical system depend on the object radiance?

This chapter deals with the first of these questions, the second question
is addressed in Section 7.5.

6.2 Radiometry, Photometry, Spectroscopy, and Color

6.2.1 Radiometry Terms

Radiometry is the topic in optics describing and measuring radiation
and its interaction with matter. Because of the dual nature of radiation,
the radiometric terms refer either to energy or to particles; in case of
electromagnetic radiation, the particles are photons (Section 6.3.4). If it
is required to distinguish between the two types, the indices e and p are
used for radiometric terms.

Radiometry is not a complex subject. It has only become a confusing
subject following different, inaccurate, and often even wrong usage of
its terms. Moreover, radiometry is taught less frequently and less thor-
oughly than other subjects in optics. Thus, knowledge about radiometry
is less widespread. However, it is a very important subject for imaging.
Geometrical optics only tells us where the image of an object is located,
whereas radiometry says how much radiant energy has been collected
from an object.

Radiant Energy. Since radiation is a form of energy, it can do work.
A body absorbing radiation is heated up. Radiation can set free elec-
tric charges in a suitable material designed to detect radiation. Radiant
energy is denoted by Q and given in units of Ws (joule) or number of
particles (photons).

Radiant Flux. The power of radiation, i. e., the energy per unit time, is
known as radiant flux and denoted by &:

_de

d = ar (6.1)

This term is important to describe the total energy emitted by a light

source per unit time. Its unit is joule/s (Js~!), watt (W), or photons per s

(s7h).

Radiant Flux Density. The radiant flux per unit area, the flux density,
is known by two names:

. . do . do
irradiance E = d—AO, excitance M = d—AO. (6.2)
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Figure 6.2: a Definition of the solid angle. b Definition of radiance, the radiant
power emitted per unit surface area d A projected in the direction of propagation
per unit solid angle €.

The irradiance, E, is the radiant flux incident upon a surface per unit
area, for instance a sensor that converts the radiant energy into an elec-
tric signal. The unit of irradiance is Wm™2, or photons per area and
time (m~2s!). If the radiation is emitted from a surface, the radiant flux
density is called excitance or emittance and denoted by M.

Solid Angle. The concept of the solid angle is paramount for an under-
standing of the angular distribution of radiation. Consider a compact
source at the center of a sphere of radius R beaming radiation outwards
in a cone of directions (Fig. 6.2a). The boundaries of the cone outline
an area A on the sphere. The solid angle () measured in steradians (sr)
is the area A divided by the square of the radius (Q = A/R?). Although
the steradian is a dimensionless quantity, it is advisable to use it explic-
itly when a radiometric term referring to a solid angle can be confused
with the corresponding non-directional term. The solid angle of a whole
sphere and hemisphere are 41t and 27r, respectively.

Radiant Intensity. The (total) radiant flux per unit solid angle emitted
by a source is called the radiant intensity I:

_de
- do’
It is obvious that this term only makes sense for describing compact or
point sources, i.e., when the distance from the source is much larger

than its size. This region is also often called the far field of a radiator.
Intensity is also useful for describing light beams.

I (6.3)

Radiance. For an extended source, the radiation per unit area in the
direction of excitance and per unit solid angle is an important quantity
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(Fig. 6.2b):
A% d%
~ dAdQ  dApcos6dQ’

The radiation can either be emitted from, pass through, or be incident
on the surface. The radiance L depends on the angle of incidence to the
surface, 0 (Fig. 6.2b), and the azimuth angle ¢. For a planar surface, 0
and ¢ are contained in the interval [0, 7r/2] and [0, 277], respectively.
It is important to realize that the radiance is related to a unit area in
the direction of excitance, dA = dAp - cos 8. Thus, the effective area
from which the radiation is emitted increases with the angle of incidence.
The unit for energy-based and photon-based radiance are Wm™2sr~! and
s~Im~2sr~!, respectively.

Often, radiance — especially incident radiance — is called brightness.
It is better not to use this term at all as it has contributed much to the
confusion between radiance and irradiance. Although both quantities
have the same dimension, they are quite different. Radiance L describes
the angular distribution of radiation, while irradiance FE integrates the
radiance incident to a surface element over a solid angle range corre-
sponding to all directions under which it can receive radiation:

L (6.4)

/2 21
E = jL(@,d)) cos0dQ = J JL(Q,(/))CosGsinQdG deo. (6.5)
Q 0 0

The factor cos @ arises from the fact that the unit area for radiance is
related to the direction of excitance (Fig. 6.2b), while the irradiance is
related to a unit area parallel to the surface.

6.2.2 Spectroradiometry

Because any interaction between matter and radiation depends on the
wavelength or frequency of the radiation, it is necessary to treat all ra-
diometric quantities as a function of the wavelength. Therefore, we de-
fine all these quantities per unit interval of wavelength. Alternatively,
it is also possible to use unit intervals of frequencies or wave numbers.
The wave number denotes the number of wavelengths per unit length
interval (see Eq. (2.14) and Section 2.3.6). To keep the various spectral
quantities distinct, we specify the dependency explicitly, e. g., L(A), L(v),
and L(k).

The radiometric terms discussed in the previous section measure the
properties of radiation in terms of energy or number of photons. Pho-
tometry relates the same quantities to the human eyes’ response to them.
Photometry is of importance to scientific imaging in two respects: First,
photometry gives a quantitative approach to radiometric terms as the
human eye senses them. Second, photometry serves as a model for how



< start menu

162 6 Quantitative Visualization

to describe the response of any type of radiation sensor used to convert
irradiance into an electric signal. The key in understanding photometry
is to look at the spectral response of the human eye. Otherwise, there is
nothing new to photomeftry.

6.2.3 Spectral Sampling Methods

Spectroscopic imaging is in principle a very powerful tool for identify-
ing objects and their properties because almost all optical material con-
stants depend on the wavelength of the radiation. The trouble with spec-
troscopic imaging is that it adds another coordinate to imaging and the
required amount of data is multiplied correspondingly. Therefore, it is
important to sample the spectrum with the minimum number of sam-
ples sufficient to perform the required task. Here, we introduce several
general spectral sampling strategies. In the next section, we also discuss
human color vision from this point of view as one realization of spectral
sampling.

Line sampling is a technique where each channel picks only a narrow
spectral range (Fig. 6.3a). This technique is useful if processes are to
be imaged that are related to emission or absorption at specific spectral
lines. The technique is very selective. One channel “sees” only a specific
wavelength and is insensitive — at least to the degree that such a narrow
bandpass filtering can be realized technically — to all other wavelengths.
Thus, this technique is suitable for imaging very specific effects or spe-
cific chemical species. It cannot be used to make an estimate of the total
radiance from objects since it misses most wavelengths.

Band sampling is the appropriate technique if the total radiance in
a certain wavelength range has to be imaged and still some wavelength
resolution is required (Fig. 6.3b). Ideally, the individual bands have uni-
form responsivity and are adjacent to each other. Thus, band sampling
gives the optimum resolution with a few channels but does not allow
any distinction of the wavelengths within one band. The spectral reso-
lution achievable with this sampling method is limited to the width of
the spectral bands of the sensors.

In many cases, it is possible to make a model of the spectral radiance
of a certain object. Then, a much better spectral sampling technique can
be chosen that essentially samples not certain wavelengths but rather
the parameters of the model. This technique is known as model-based
spectral sampling.

We will illustrate this general approach with a simple example. It
illustrates a method for measuring the mean wavelength of an arbitrary
spectral distribution ¢ (A) and the total radiative flux in a certain wave
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Figure 6.3: Examples of spectral sampling: a line sampling, b band sampling,
¢ sampling adapted to a certain model of the spectral range, in this example for
a single spectral line of unknown wavelength.

number range. These quantities are defined as

1
A2 — Ap

A2 Az Az
¢ = Jd)()\)d)\ and A= J)\d)(A)d?\/qu(A)dA. (6.6)
A1 Ay A1

In the second equation, the spectral distribution is multiplied by the
wavelength A. Therefore, we need a sensor that has a sensitivity varying
linearly with the wave number. We try two sensor channels with the
following linear spectral responsivity, as shown in Fig. 6.3c:

Ri(A) = ;\__);\1 Ro = (%-F;\)Ro
S . (6.7)
RN = Ro-Rid) = (5 -4) Ro,
where R is the responsivity of the sensor and A the normalized wave-
length
~ AL+ A
A= <A—ITZ>/(A2—A1). 6.8)

A is zero in the middle and +=1/2 at the edges of the interval.

The sum of the responsivity of the two channels is independent of
the wavelength, while the difference is directly proportional to the wave-
length and varies from —R( for A = A; to Ry for A = Ay:

R1(A) + R2(A) = Ro

R1(A) — R2(A) = 2AR,. (6.9)

~ =
Rl
ot
[

Thus the sum of the signals from the two sensors R; and R, gives
the total radiative flux, while the mean wavelength is given by 2A =
(R1 —R2)/(R1 + R»). Except for these two quantities, the sensors cannot
reveal any further details about the spectral distribution.
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Figure 6.4: a Relative spectral response of the “standard” human eye as set by
the CIE in 1980 under medium to high irradiance levels (photopic vision, V (A),
solid line), and low radiance levels (scotopic vision, V' (A), dashed line); data from
[119]. b Relative cone sensitivities of the human eye after DeMarco et al. [34].

6.2.4 Human Color Vision

The human visual system responds only to electromagnetic radiation
having wavelengths between about 360 and 800nm. It is very insen-
sitive at wavelengths between 360 and about 410 nm and between 720
and 830nm. Even for individuals without vision defects, there is some
variation in the spectral response. Thus, the visible range in the electro-
magnetic spectrum (light, Fig. 6.6) is somewhat uncertain.

The retina of the eye onto which the image is projected contains two
general classes of receptors, rods and cones. Photopigments in the outer
segments of the receptors absorb radiation. The absorbed energy is then
converted into neural electrochemical signals which are transmitted via
subsequent neurons and the optic nerve to the brain. Three different
types of photopigments in the cones make them sensitive to different
spectral ranges and, thus, enable color vision (Fig. 6.4b). Vision with
cones is only active at high and medium illumination levels and is also
called photopic vision. At low illumination levels, vision is taken over by
the rods. This type of vision is called scotopic vision.

At first glance it might seem impossible to measure the spectral re-
sponse of the eye in a quantitative way since we can only rely on the sub-
jective impression how the human eye senses “radiance”. However, the
spectral response of the human eye can be measured by making use of
the fact that it can sense brightness differences very sensitively. Based
on extensive studies with many individuals, in 1924 the International
Lighting Commission (CIE) set a standard for the spectral response of
the human observer under photopic conditions that was slightly revised
several times later on. Figure 6.4 show the 1980 values. The relative
spectral response curve for scotopic vision, V' (A) is similar in shape but
the peak is shifted from about 555 nm to 510 nm (Fig. 6.4a).
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Physiological measurements can only give a relative spectral lumi-
nous efficiency function. Therefore, it is required to set a new unit
for luminous quantities. This new unit is the candela; it is one of the
seven fundamental units of the metric system (Systéme Internationale,
or SI). The candela is defined to be the luminous intensity of a monochro-
matic source with a frequency of 5.4 x 101* Hz and a radiant intensity
of 1/683 W/sr. The odd factor 1/683 has historical reasons because the
candela was previously defined independently from radiant quantities.

With this definition of the luminous intensity and the capability of
the eye to detect small changes in brightness, the luminous intensity of
any light source can be measured by comparing it to a standard light
source. This approach, however, would refer the luminous quantities to
an individual observer. Therefore, it is much better to use the standard
spectral luminous efficacy function. Then, any luminous quantity can be
computed from its corresponding radiometric quantity by:

! 780 nm
Q, = 683% J Q(A)V(A)dA  photopic,
S sonm (6.10)
Qu = 1754% J Q(A)V'(A)dA scotopic,
380 nm

where V (A) is the spectral luminous efficacy for day vision (photopic). A
list with all photometric quantities and their radiant equivalent can be
found in Appendix A (> R15). The units of luminous flux, the photomet-
ric quantity equivalent to radiant flux (units W) is lumen (Im).

In terms of the spectral sampling techniques summarized above, hu-
man color vision can be regarded as a blend of band sampling and model-
based sampling. The sensitivities cover different bands with maximal
sensitivities at 445nm, 535nm, and 575nm, respectively, but which
overlap each other significantly (Fig. 6.4b). In contrast to our model
examples, the three sensor channels are unequally spaced and cannot
simply be linearly related. Indeed, the color sensitivity of the human eye
is uneven, and all the nonlinearities involved make the science of color
vision rather difficult. Here, we give only some basic facts in as much as
they are useful to handle color images.

With three-color sensors, it is obvious that color signals cover a 3-
D space. Each point in this space represents one color. It is clear that
many spectral distributions, known as metameric color stimuli or just
metameres, map onto one point in the color space. Generally, we can
write the signal s; received by a sensor with a spectral responsivity R; (A)
as

Si = JRL-(/\M)(A) dA. (6.11)
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With three primary color sensors, a triple of values is received, often
called a tristimulus.

One of the most important questions in colorimetry is how to set
up a system representing colors as linear combination of some basic or
primary colors. A set of three spectral distributions ¢;(A) represents a
set of primary colors and results in an array of responses that can be
described by the matrix P with

pij = JRi(A)¢j(A)dA. (6.12)

Each vector p; = (p1j, p2j, P3;) represents a tristimulus of the pri-
mary colors in the 3-D color space. It is obvious that only colors can be
represented that are a linear combination of the base vectors p;

s =Rp, +Gp, + Bp; with 0<R,G,B=<1, (6.13)

where the coefficients are denoted by R, G, and B, indicating the three
primary colors red, green, and blue. Only if the three base vectors p;
are an orthogonal base can all colors be presented as a linear combi-
nation of them. One possible and easily realizable primary color sys-
tem is formed by the monochromatic colors red, green, and blue with
wavelengths 700 nm, 546.1 nm, and 435.8 nm, as adopted by the CIE in
1931. In the following, we use the primary color system according to the
European EBU norm with red, green, and blue phosphor, as this is the
standard way color images are displayed.

Given the significant overlap in the spectral response of the three
types of cones (Fig. 6.4b), especially in the green image, it is obvious that
no primary colors exist that can span the color systems. The colors that
can be represented lie within the parallelepiped formed by the three
base vectors of the primary colors. The more the primary colors are
correlated with each other, i.e., the smaller the angle between two of
them, the smaller is the color space that can be represented by them.
Mathematically, colors that cannot be represented by a set of primary
colors have at least one negative coefficient in Eq. (6.13).

One component in the 3-D color space is intensity. If a color vector
is multiplied by a scalar, only its intensity is changed but not the color.
Thus, all colors could be normalized by the intensity. This operation
reduces the 3-D color space to a 2-D color plane or chromaticity diagram:

R G B

“R+c:8 9 RiciB PTRicm (6.14)

¥

with r+g+b=1. (6.15)

It is sufficient to use only the two components + and g. The third com-
ponent is then given by b = 1 — v — g, according to Eq. (6.15). Thus,
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all colors that can be represented by the three primary colors R, G, and
B are confined within a triangle in the *g space as shown in Fig. 6.5a.
As already mentioned, some colors cannot be represented by the pri-
mary colors. The boundary of all possible colors is given by the visible
monochromatic colors from deep red to blue. The line of monochro-
matic colors forms a U-shaped curve in the » g-space. Because all colors
that lie on a straight line between two colors can be generated as an ad-
ditive mixture of these colors, the space of all possible colors covers the
area filled by the U-shaped spectral curve and the straight mixing line
between its two end points for blue and red color (purple line).

In order to avoid negative color coordinate values, often a new coor-
dinate system is chosen with virtual primary colors, i. e., primary colors
that cannot be realized by any physical colors. This color system is
known as the XY Z color system and constructed in such a way that it
just includes the curve of monochromatic colors with only positive coef-
ficients (Fig. 6.5¢) and given by the following linear coordinate transform:

X 0.490 0.310 0.200 R
Y [=] 0177 0.812 0.011 G |. (6.16)
VA 0.000 0.010 0.990 B

The back-transform from the XY Z color system to the RGB color system
is given by the inverse of the matrix in Eq. (6.16).

The color systems discussed so far do not directly relate to the human
sense of color. From the v g or xy values, we cannot directly infer colors
such as green or blue. A natural type of description of colors includes
besides the Iuminance (intensity) the type of color, such as green or blue
(hue) and the purity of the color (saturation). From a pure color, we can
obtain any degree of saturation by mixing it with white.

Hue and saturation can be extracted from chromaticity diagrams by
simple coordinate transformations. The point of reference is the white
point in the middle of the chromaticity diagram (Fig. 6.5b). If we draw
a line from this point to a pure (monochromatic) color, it constitutes a
mixing line for a pure color with white and is thus a line of constant
hue. From the white point to the pure color, the saturation increases
linearly. The white point is given in the rg chromaticity diagram by
w=[1/3,1/3]".

A color system that has its center at the white point is called a color
difference system. From a color difference system, we can infer a hue-
saturation color system (hue, saturation, and density; HIS) by simply
using polar coordinate systems. Then, the saturation is proportional to
the radius and the hue to the angle (Fig. 6.5b).

So far, color science is easy. All the real difficulties arise from the
need to adapt the color system in an optimum way to display and print
devices and for transmission by television signals or to correct for the
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Figure 6.5: Chromaticity diagram shown in the a r g-color space, b uv-color
space, ¢ xy-color space; the shaded triangles indicate the colors that can be
generated by additive color mixing using the primary colors R, G, and B.

uneven color resolution of the human visual system that is apparent in
the chromaticity diagrams of simple color spaces (Fig. 6.5). These needs
have led to a confusing variety of different color systems (> R16).

6.3 Waves and Particles

Three principal types of radiation can be distinguished: electromagnetic radi-
ation, particulate radiation with atomic or subatomic particles, and acoustic
waves. Although these three forms of radiation appear at first glance quite dif-
ferent, they have many properties in common with respect to imaging. First,
objects can be imaged by any type of radiation emitted by them and collected
by a suitable imaging system.

Second, all three forms of radiation show a wave-like character including partic-
ulate radiation. The wavelength A is the distance of one cycle of the oscillation
in the propagation direction. The wavelength also governs the ultimate resolu-
tion of an imaging system. As a rule of thumb only structures larger than the
wavelength of the radiation can be resolved.
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Given the different types of radiation, it is obvious that quite different properties
of objects can be imaged. For a proper setup of an image system, it is therefore
necessary to know some basic properties of the different forms of radiation.
This is the purpose of this section.

6.3.1 Electromagnetic Waves

Electromagnetic radiation consists of alternating electric and magnetic fields. In
an electromagnetic wave, these fields are directed perpendicular to each other
and to the direction of propagation. They are classified by the frequency v and
wavelength A. In free space, all electromagnetic waves travel with the speed of
light, ¢ =~ 3x108 ms~!. The propagation speed establishes the relation between
wavelength A and frequency v of an electromagnetic wave as

Av =c. (6.17)

The frequency is measured in cycles per second (Hz or s~1) and the wavelength
in meters (m).

As illustrated in Fig. 6.6, electromagnetic waves span an enormous frequency
and wavelength range of 24 decades. Only a tiny fraction from about 400-
700 nm, about one octave, falls in the visible region, the part to which the hu-
man eye is sensitive. The classification usually used for electromagnetic waves
(Fig. 6.6) is somewhat artificial and has mainly historical reasons given by the
way these waves are generated or detected.

In matter, the electric and magnetic fields of the electromagnetic wave interact
with the electric charges, electric currents, electric fields, and magnetic fields in
the medium. Nonetheless, the basic nature of electromagnetic waves remains
the same, only the propagation of the wave is slowed down and the wave is
attenuated.

The simplest case is given when the medium reacts in a linear way to the distur-
bance of the electric and magnetic fields caused by the electromagnetic wave
and when the medium is isotropic. Then the influence of the medium is ex-
pressed in the complex index of refraction, n = n + ix. The real part, n, or
ordinary index of refraction, is the ration of the speed of light, c, to the prop-
agation velocity u in the medium, n = ¢/u. The imaginary component of n, ¥,
is related to the attenuation of the wave amplitude.

Generally, the index of refraction depends on the frequency or wavelength of
the electromagnetic wave. Therefore, the propagation speed of a wave is no
longer independent of the wavelength. This effect is called dispersion and the
wave is called a dispersive wave.

The index of refraction and the attenuation coefficient are the two primary pa-
rameters characterizing the optical properties of a medium. In the context of
imaging they can be used to identify a chemical species or any other physical
parameter influencing it.

Electromagnetic waves are generally a linear phenomenon. This means that
we can decompose any complex wave pattern into basic ones such as plane
harmonic waves. Or, conversely, we can superimpose any two or more electro-
magnetic waves and be sure that they are still electromagnetic waves.
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This superposition principle only breaks down for waves with very high field
strengths. Then, the material no longer acts in a linear way on the electromag-
netic wave but gives rise to nonlinear optical phenomena. These phenomena
have become obvious only quite recently with the availability of very intense
light sources such as lasers. A prominent nonlinear phenomenon is the fre-
quency doubling of light. This effect is now widely used in lasers to produce
output beams of double the frequency (half the wavelength). From the perspec-
tive of quantitative visualization, these nonlinear effects open an exciting new
world for visualizing specific phenomena and material properties.

6.3.2 Polarization

The superposition principle can be used to explain the polarization of electro-
magnetic waves. Polarization is defined by the orientation of the electric field
vector E. If this vector is confined to a plane, as in the previous examples of
a plane harmonic wave, the radiation is called plane polarized or linearly po-
larized. In general, electromagnetic waves are not polarized. To discuss the
general case, we consider two waves traveling in the z direction, one with the
electric field component in the x direction and the other with the electric field
component in the y direction. The amplitudes E, and E» are constant and ¢ is
the phase difference between the two waves. If ¢ = 0, the electromagnetic field
vector is confined to a plane. The angle ¢ of this plane with respect to the x
axis is given by

¢ = arctan 2. (6.18)

Ey

Another special case arises if the phase difference ¢ = +90° and E; = E»; then
the wave is called circularly polarized. In this case, the electric field vector ro-
tates around the propagation direction with one turn per period of the wave.
The general case where both the phase difference is not +90° and the ampli-
tudes of both components are not equal is called elliptically polarized. In this
case, the E vector rotates in an ellipse, i. e., with changing amplitude around the
propagation direction. It is important to note that any type of polarization can
also be composed of a right and a left circular polarized beam. A left circular
and a right circular beam of the same amplitude, for instance, combine to form
a linear polarized beam. The direction of the polarization plane depends on the
phase shift between the two circularly polarized beams.

6.3.3 Coherence

An important property of some electromagnetic waves is their coherence. Two
beams of radiation are said to be coherent if a systematic relationship between
the phases of the electromagnetic field vectors exists. If this relationship is
random, the radiation is incoherent. It is obvious that incoherent radiation
superposes in a different way than coherent radiation. In case of coherent ra-
diation, destructive inference is possible in the sense that waves quench each
other in certain places were the phase shift is 180°.

Normal light sources are incoherent. They do not send out one continuous
planar wave but rather wave packages of short duration and with no particular
phase relationship. In contrast, a laser is a coherent light source.
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6.3.4 Photons

Electromagnetic radiation has particle-like properties in addition to those char-
acterized by wave motion. Electromagnetic energy is quantized in that for a
given frequency its energy can only occur in multiples of the quantity hv in
which h is Planck’s constant, the action quantum:

(6.19)

The quantum of electromagnetic energy is called the photon.

In any interaction of radiation with matter, be it absorption of radiation or emis-
sion of radiation, energy can only be exchanged in multiples of these quanta.
The energy of the photon is often given in the energy unit electron volts (eV).
This is the kinetic energy an electron would acquire in being accelerated through
a potential difference of one volt. A photon of yellow light, for example, has an
energy of approximately 2 eV. Figure 6.6 includes a photon energy scale in eV.
The higher the frequency of electromagnetic radiation, the more its particulate
nature becomes apparent, because its energy quanta get larger. The energy of
a photon can be larger than the energy associated with the rest mass of an el-
ementary particle. In this case it is possible for electromagnetic energy to be
spontaneously converted into mass in the form of a pair of particles. Although
a photon has no rest mass, a momentum is associated with it, since it moves
with the speed of light and has a finite energy. The momentum, p, is given by

p =h/A. (6.20)

The quantization of the energy of electromagnetic waves is important for imag-
ing since sensitive radiation detectors can measure the absorption of a single
photon. Such detectors are called photon counters. Thus, the lowest energy
amount that can be detected is hv. The random nature of arrival of photons
at the detector gives rise to an uncertainty (“noise”) in the measurement of
radiation energy. The number of photons counted per unit time is a random
variable with a Poisson distribution as discussed in Section 3.4.1. If N is the
average number of counted photons in a given time interval, the Poisson distri-
bution has a standard deviation oy = +/N. The measurement of a radiative flux
with a relative standard deviation of 1% thus requires the counting of 10000
photons.

6.3.5 Particle Radiation

Unlike electromagnetic waves, most particulate radiation moves at a speed less
than the speed of light because the particles have a non-zero rest mass. With
respect to imaging, the most important type of particulate radiation is due to
electrons, also known as beta radiation when emitted by radioactive elements.
Other types of important particulate radiation are due to the positively charged
nucleus of the hydrogen atom or the proton, the nucleus of the helium atom or
alpha radiation which has a double positive charge, and the neutron.

Particulate radiation also shows a wave-like character. The wavelength A and
the frequency v are directly related to the energy and momentum of the particle:

v = E/h Bohr frequency condition,

A = h/p deBroglie wavelength relation. (6.21)
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These are the same relations as for the photon, Egs. (6.19) and (6.20). Their
significance for imaging purposes lies in the fact that particles typically have
much shorter wavelength radiation. Electrons, for instance, with an energy of
20keV have a wavelength of about 10! m or 10 pm, less than the diameter of
atoms (Fig. 6.6) and about 50000 times less than the wavelength of light. As
the resolving power of any imaging system — with the exception of nearfield
systems — is limited to scales in the order of a wavelength of the radiation (Sec-
tion 7.6.3), imaging systems based on electrons such as the electron microscope,
have a much higher potential resolving power than any light microscope.

6.3.6 Acoustic Waves

In contrast to electromagnetic waves, acoustic or elastic waves need a carrier.
Acoustic waves propagate elastic deformations. So-called longitudinal acoustic
waves are generated by isotropic pressure, causing a uniform compression and
thus a deformation in the direction of propagation. The local density p, the local
pressure p and the local velocity v are governed by the same wave equation

%p °p ) . 1
Frele uAp, 32 =u-Ap, with u = ToB’ (6.22)

where u is the velocity of sound, pg is the static density and B,4 the adiabatic
compressibility. The adiabatic compressibility is given as the relative volume
change caused by a uniform pressure (force/unit area) under the condition that
no heat exchange takes place:

1dv
Baa = Var (6.23)
Thus the speed of sound is related in a universal way to the elastic properties
of the medium. The lower the density and the compressibility, the higher is
the speed of sound. Acoustic waves travel much slower than electromagnetic
waves. Their speed in air, water, and iron at 20°C is 344m/s, 1485m/s, and
5100m/s, respectively. An audible acoustic wave with a frequency of 3 kHz has
awavelength in air of about 10 cm. However, acoustic waves with a much higher
frequency, known as ultrasound, can have wavelengths down in the micrometer

range. Using suitable acoustic lenses, ultrasonic microscopy is possible.

If sound or ultrasound is used for imaging, it is important to point out that prop-
agation of sound is much more complex in solids. First, solids are generally not
isotropic, and the elasticity of a solid cannot be described by a scalar compress-
ibility. Instead, a tensor is required to describe the elasticity properties. Second,
shear forces in contrast to pressure forces give rise also to transversal acoustic
waves, where the deformation is perpendicular to the direction of propagation
as with electromagnetic waves. Thus, sound waves of different modes travel
with different velocities in a solid.

Despite all these complexities, the velocity of sound depends only on the density
and the elastic properties of the medium. Therefore, acoustic waves show no
dispersion (in the limit of continous mechanics, i. e., for wavelengths much large
than distances between atoms). Thus waves of different frequencies travel with
the same speed. This is an important basic fact for acoustic imaging techniques.
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Figure 6.7: Principle possibilities for interaction of radiation and matter: a at
the surface of an object, i. e., at the discontinuity of optical properties, b volume
related.

6.4 Interactions of Radiation with Matter

The interaction of radiation with matter is the basis for any imaging technique.
Basically, two classes of interactions of radiation with matter can be distin-
guished. The first class is related to the discontinuities of optical properties
at the interface between two different materials (Fig. 6.7a). The second class is
volume-related and depends on the optical properties of the material (Fig. 6.7b).
In this section, we give a brief summary of the most important phenomena. The
idea is to give the reader an overview of the many possible ways to measure ma-
terial properties with imaging techniques.

6.4.1 Thermal Emission

Emission of electromagnetic radiation occurs at any temperature and is thus a
ubiquitous form of interaction between matter and electromagnetic radiation.



< start menu

6.4 Interactions of Radiation with Matter 175
60001 T 1
T NN W
1000 I —H
e 2
cm”lmsr
100 3000
2000
10
L 1000
0.1 / /
500
0.01 e g
uv/ Light IR
0.001 300
0.0001
A
0.00001 / / [pm]
05 1 5 10.

Figure 6.8: Spectral radiance L, of a blackbody at different absolute tempera-
tures T in K as indicated. The thin line crosses the emission curves at the wave-
length of maximum emission.

The cause for the spontaneous emission of electromagnetic radiation is thermal
molecular motion, which increases with temperature. During emission of radi-
ation, thermal energy is converted to electromagnetic radiation and the matter
is cooling down according to the universal law of energy conservation.

An upper level for thermal emission exists. According to the laws of thermody-
namics, the fraction of radiation at a certain wavelength that is absorbed must
also be re-emitted: thus, there is an upper limit for the emission, when the ab-
sorptivity is one. A perfect absorber — and thus a maximal emitter — is called
a blackbody.

The correct theoretical description of the radiation of a blackbody by Planck
in 1900 required the assumption of emission and absorption of radiation in
discrete energy quanta E = hv. The spectral radiance of a blackbody with the
absolute temperature T is (Fig. 6.8):

2hv3 1 2hc? 1
Le(v,T) = — " , Le(AT) = I " ,  (6.24)
¢ exp (2r) -1 exp (gfx) — 1
with
h=6.6262 x1034]s Planck constant,
kg = 1.3806 x 10723 JK~! Boltzmann constant, and (6.25)

¢ =2.9979 x 108 ms~! speed of light in vacuum.

Blackbody radiation has the important feature that the emitted radiation does
not depend on the viewing angle. Such a radiator is called a Lambertian ra-
diator. Therefore the spectral emittance (constant radiance integrated over a
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Figure 6.9: Radiance of a blackbody at environmental temperatures as indicated
in the wavelength ranges of a 0-20um and b 3-5um.

hemisphere) is 1r times higher than the radiance:
2mhc? 1
5 h :
A> exp (ks%\) -1

The total emittance of a blackbody integrated over all wavelengths is propor-
tional to T* according to the law of Stefan and Boltzmann:

(6.26)

M,(A,T) =

2 kg

M, = JME(A) dA = = KT s opd 6.27)
0

15 c2h3

where 0 ~ 5.67 - 10°8Wm2K* is the Stefan-Boltzmann constant. The wave-
length of maximum emittance of a blackbody is given by Wien'’s law:
-3
Ay 2.898 - 10 Km_ (6.28)
T

The maximum excitance at room temperature (300K) is in the infrared at about
10 um and at 3000K (incandescent lamp) in the near infrared at 1 ym.
Real objects emit less radiation than a blackbody. The ratio of the emission of
areal body to the emission of the blackbody is called (specific) emissivity € and
depends on the wavelength.
Radiation in the infrared and microwave range can be used to image the tem-
perature distribution of objects. This application of imaging is known as ther-
mography. Thermal imaging is complicated by the fact that real objects are not
perfect black bodies. Thus they partly reflect radiation from the surrounding.
If an object has emissivity €, a fraction 1 — € of the received radiation originates
from the environment, biasing the temperature measurement. Under the sim-
plifying assumption that the environment has a constant temperature T,, we
can estimate the influence of the reflected radiation on the temperature mea-
surement. The total radiance emitted by the object, E, is

E=€e0T*+(1-¢€)oT). (6.29)

This radiance is interpreted to originate from a blackbody with the apparent
temperature T':
oT* =eoT*+ (1 -e€)o T2 (6.30)



< start menu

6.4 Interactions of Radiation with Matter 177
a b
1
Le/Le(40°C) 10 T
=— [l
te
0.8 7 7
14 / 5 — 5
06 ]2// | 4
. 10 _ —_
8 \5\
5 3 3
0.4
4 \\8
/ 3 2 6 2
1D
0.2 1.5 — 1.5
Temperature [°C] Temperature~dl .
0 10 20 30 40
0 10 20 30 40

Figure 6.10: Relative photon-based radiance in the temperature interval 0-40°C
and at wavelengths in um as indicated: a related to the radiance at 40°C; b
relative change in percent per degree.

Rearranging for T’ yields
T4\ /4
T’:T(e+(le)Te4> . (6.31)

In the limit of small temperature differences (AT = T, - T <« T) Eq. (6.31)
reduces to
T =~eT+(1-€)T, or T'—-T = (1-¢€)AT. (6.32)

From this simplified equation, we infer that a 1% deviation of € from unity
results in 0.01 K temperature error per 1K difference between the object tem-
perature and the environmental temperature. Even for an almost perfect black-
body such as a water surface with a mean emissivity of about 0.97, this leads to
considerable errors in the absolute temperature measurements. The apparent
temperature of a bright sky can easily be 80K colder than the temperature of a
water surface at 300 K, leading to a —0.03- 80K = —2.4K bias in the measure-
ment of the absolute temperature of the water surface.

This bias can, according to Egs. (6.31) and (6.32), be corrected if the mean tem-
perature of the environment is known. Also relative temperature measurements
are biased, although to a less significant degree. Assuming a constant environ-
mental temperature in the limit (T, — T) < T, we can infer from Eq. (6.32) that

0T = edT for (T,-T) < T, (6.33)
which means that the measured temperature differences are smaller by the fac-
tor € than in reality.

Other corrections must be applied if radiation is significantly absorbed on the

way from the object to the receiver. If the distance between the object and
the camera is large, as for space-based or aerial infrared imaging of the Earth’s
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Figure 6.11: Some examples of thermography: a Heidelberg University building
taken on a cold winter day, b street scene, c look inside a PC, and d person with
lighter.

surface, it is important to select a wavelength range with a minimum absorp-
tion. The two most important atmospheric windows are at 3-5 ym (with a sharp
absorption peak around 4.15 ym due to CO;) and at 8-12 ym.

Figure 6.9 shows the radiance of a blackbody at environmental temperatures
between 0 and 40°C in the 0-20 um and 3-5 ym wavelength ranges. Although
the radiance has its maximum around 10 ym and is about 20 times higher than
at 4 um, the relative change of the radiance with temperature is much larger at
4 ym than at 10 ym.

This effect can be seen in more detail by examining radiance relative to the
radiance at at fixed temperature (Fig. 6.10a) and the relative radiance change in
(0L/0T)/L in percent (Fig. 6.10b). While the radiance at 20°C changes only about
1.7%/K at 10 um wavelength, it changes about 4 %/K at 4 um wavelength. This
higher relative sensitivity makes it advantageous to use the 3-5 um wavelength
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Figure 6.12: a A ray changes direction at the interface between two optical
media with a different index of refraction. b Parallel polarized light is entirely
transmitted and not reflected when the angle between the reflected and trans-
mitted beam would be 90°. This condition occurs at the transitions from both the
optically thinner medium and the thicker one.

range for measurements of small temperature differences although the absolute
radiance is much lower.

Some images illustrating the application of thermography are shownin Fig.6.11.

6.4.2 Refraction, Reflection, and Transmission

At the interface between two optical media, according to Snell’s law the trans-
mitted ray is refracted, i. e., changes direction (Fig. 6.12):

sinf; mno»
. = 7]
sinf, mny

(6.34)

where 0, and 0, are the angles of incidence and refraction, respectively. Re-
fraction is the basis for transparent optical elements (lenses) that can form an
image of an object. This means that all rays emitted from a point of the object
and passing through the optical element converge at another point at the image
plane.

A specular surface behaves like a mirror. Light irradiated in the direction (0;, ¢;)
is reflected back in the direction (0;, ¢; + 7). This means that the angle of
reflectance is equal to the angle of incidence and that the incident and reflected
ray and the normal of the surface lie in one plane. The ratio of the reflected
radiant flux to the incident flux at the surface is called the reflectivity p.

Specular reflection only occurs when all parallel incident rays are reflected as
parallel rays. A surface need not be perfectly smooth for specular reflectance
because of the wave-like nature of electromagnetic radiation. It is sufficient that
the residual surface irregularities are significantly smaller than the wavelength.
The reflectivity p depends on the angle of incidence, the refractive indices, n,
and 7., of the two media meeting at the interface, and the polarization state of
the radiation. Light is called parallel or perpendicular polarized if the electric
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Figure 6.13: Interface reflectivities for parallel (||) and perpendicular (1) polar-
ized light and unpolarized light incident from a air (n; = 1.00) to BK7 glass
(m2 = 1.517), b BK7 glass to air.

field vector is parallel or perpendicular to the plane of incidence, i. e., the plane
containing the directions of incidence, reflection, and the surface normal.

Fresnel’s equations give the reflectivity for parallel polarized light:

_ tan?(6, — 6>)

PI= tan?(6, + 0,)" (635
for perpendicular polarized light
sin?(0; — 05)
= —F ", 6.36
7 sin?(0; + 0,) (6.36)
and for unpolarized light (see Fig. 6.13)
p = P+ P (6.37)

2 ’

respectively, where 0, and 0, are the angles of the incident and refracted rays
related by Snell’s law.
At normal incidence (6, = 0), the reflectivity does not depend on the polariza-
tion state: ( 2 2

ny —np n-1 .

= = h = . .

12 - Mt D)2 with n=n;/n; (6.38)
As illustrated in Fig. 6.13, parallel polarized light is not reflected at all at a cer-
tain angle, the polarizing or Brewster angle 0). This condition occurs when the
refracted and reflected rays would be perpendicular to each other (Fig. 6.12b):

_r

V1 +nf/ns

When a ray enters into a medium with lower refractive index, there is a critical
angle, 0.

0p = arcsin (6.39)

0, = arcsin% with n; < np, (6.40)
2

beyond which all light is reflected and none enters the optically thinner medium.
This phenomenon is called total reflection.
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6.4.3 Rough Surfaces

Most natural and also artificial objects do not reflect light directly but show a dif-
fuse reflectance, as microscopic surface roughness causes reflection in various
directions depending on the slope distribution of the reflecting facets. There is
a great variety in how these rays are distributed over the emerging solid angle.
Some materials produce strong forward scattering effects while others scatter
almost equally in all directions. Other materials show a kind of mixed reflectiv-
ity, which is partly specular due to reflection at the smooth surface and partly
diffuse caused by body reflection. In this case, light penetrates partly into the
object where it is scattered at optical inhomogeneities. Part of this scattered
light leaves the object again, causing a diffuse reflection. To image objects that
do not emit radiation by themselves but passively reflect incident light, it is
essential to know how the light is reflected.

Generally, the relation between the incident and emitted radiance can be ex-
pressed as the ratio of the radiance emitted at the polar angle 6, and the az-
imuth angle ¢, and the irradiance received at the incidence angle 6;. This ratio
is called the bidirectional reflectance distribution function (BRDF) or reflectivity
distribution, since it generally depends on the angles of both the incident and
excitant radiance:

Le(0e, o)

Ei(0i,¢)
For a perfect mirror (specular reflection), f is zero everywhere, except for 0; =
0, and ¢, = ™ + ¢b;, hence

Sf(0i,00) = 6(0; — 0c) - 5(pe — 1T — ). (6.42)

f(eiad)iage,(be) = (641)

The other extreme is a perfect diffuser, reflecting incident radiation equally into
all directions independently of the angle of incidence. Such a surface is known
as Lambertian radiator or Lambertian reflector. The radiance of such a surface
is independent of the viewing direction:

1

1
L, = ;Ei or f(eis qbi!ee’(l)e) = s

(6.43)

6.4.4 Absorptance and Transmittance

Radiation traveling in matter is more or less absorbed and converted into dif-
ferent energy forms, especially heat. The absorptance is proportional to the
radiant intensity in a thin layer dx. Therefore

dI(A) _

—x(A, x)I. (6.44)
dx

The absorption coefficient « is a property of the medium and depends on the
wavelength of the radiation. It is a reciprocal length with the units m~!. By
integration of Eq. (6.44), we can compute the attenuation of radiation over the
distance from O to x:

I(x) =1(0) - exp (— J: a(A,x’)dx’) , (6.45)
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or, if the medium is homogeneous (i. e.,  does not depend on the position x’),
I(x) =1(0)exp(—ax(A)x). (6.46)

The exponential attenuation of radiation in a homogeneous medium, as ex-
pressed by Eq. (6.46), is often referred to as Lambert-Beer’s or Bouger’s law.
After a distance of 1/«, the radiation is attenuated to 1/e of its initial value.

The path integral over the absorption coefficient

X2

T(x1,x2) = J x(x)dx’ (6.47)

X1

results in a dimensionless quantity that is known as the optical thickness or
optical depth. The optical depth is a logarithmic expression of radiation attenu-
ation and means that along the path from the point x; to point x; the radiation
has been attenuated to e~ 7.

If radiation travels in a composite medium, often only one chemical species
— at least at certain wavelengths — is responsible for the attenuation of the
radiation. Therefore, it makes sense to relate the absorption coefficient to the
concentration of that species:

x=¢c-c, [&]= [%] , (6.48)
molm-~—1

where c is the concentration in mol/l. Then, ¢ is known as the molar absorption
coefficient. The simple linear relation Eq. (6.48) holds for a very wide range of
radiant intensities but breaks down at very high intensities, e. g., the absorption
of highly intense laser beams. At that point, the domain of nonlinear optical
phenomena is entered.

As the absorption coefficient is a distinct optical feature of chemical species, it
can be used in imaging applications to identify chemical species and to measure
their concentrations.

Finally, the term transmittance means the fraction of radiation that remains
after the radiation has traveled a certain path in the medium. Often, transmit-
tance and transmissivity are confused. In contrast to transmittance, the term
transmissivity is related to a single surface. It means the fraction of radiation
that is not reflected but enters the medium.

6.4.5 Scattering

The attenuation of radiation by scattering can be described with the same con-
cepts as for loss of radiation by absorption. The scattering coefficient is defined
by
1dI(A)
A) = ———.
B(A) T dx

It is a reciprocal length with the units m~!. If in a medium the radiation is
attenuated both by absorption and scattering, the two effects can be combined
in the extinction coefficient k(A):

(6.49)

K(A) = &x(A) + B(A). (6.50)
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Although scattering appears to be similar to absorption, it is a much more dif-
ficult phenomenon. The above formula can only be used if the radiation from
the individual scattering events adds up incoherently at some point far from the
particles. The complexity of scattering is related to the fact that the scattered
radiation (without additional absorption) is never lost. Scattered light can be
scattered more than once. Therefore, a fraction of it can reenter the original
beam. The probability that radiance will be scattered in a certain path length
more than once is directly related to the total attenuation by scattering along
the path of the beam or the optical depth 7. If T is smaller than 0.1, less than
10% of the radiance is scattered.

The total amount of scattered light and the analysis of the angular distribution
is related to the optical properties of the scattering medium. Consequently,
scattering is caused by the optical inhomogeneity of the medium. In the further
discussion we assume that small spherical particles with radius » and index of
refraction n are imbedded in a homogeneous optical medium.

Scattering by a particle is described by the cross section. It is defined in terms of
the ratio of the flux removed by the particle to the flux incident on the particle:

o5 = P/ PTTY. (6.51)

The cross section has the units of area. It can be regarded as the effective area
of the particle for scattering that completely scatters the incident radiative flux.
Therefore, the efficiency factor for scattering Q; is defined as the cross section
related to the geometric cross section of the scattering particle:

Qs = 0_5/(7'”’2)- (6.52)

The angular distribution of the scattered radiation is given by the differential
cross section do;/dQ, i.e., the flux density scattered per unit solid angle. The
total cross-section is given as the integral over the sphere of the differential
cross-section:

doy
o5 = J a0 dQ. (6.53)
The relation between the scattering coefficient S Eq. (6.49) and the scattering
cross-section can be derived as follows. Let p be the number of particles per
unit volume. Thus, the total effective scattering cross-section covers the area
p-o. This area compared to the unit area gives the fraction of area that removes
the incident flux and is thus equal to the scattering coefficient :

B=po. (6.54)

The scattering by small particles is most significantly influenced by the ratio
of the particle size to the wavelength of the radiation expressed in the dimen-
sionless particle size g = 2w /A = 2mwrk. If g < 1 (Rayleigh scattering), the
scattering is very weak and proportional to A~4:

8 4
311

oo /Tre = (6.55)

n2+2

nz—l‘

For g > 1, the scattering can be described by geometrical optics. If the particle
completely reflects the incident radiation, the scattering cross-section is equal
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to the geometric cross-section (o5/mr? = 1) and the differential cross-section
is constant (isotropic scattering, do/dQ = 72/2).

Scattering for particles with sizes of about the wavelength of the radiation (Mie
scattering) is very complex due to diffraction and interference effects of the light
scattered from different portions of the surface of the particle. The differential
cross-section shows strong variations with the scattering angle and is directed
mostly in the forward direction, while Rayleigh scattering is fairly isotropic.

6.4.6 Optical Activity

An optical material rotates the plane of polarization of electromagnetic radia-
tion. The rotation is proportional to the concentration of the optically active
material, ¢, and the path length d:

®=yQ)cd. (6.56)

The constant y is known as the specific rotation and has the units [m? mol] or
[cm? g~1]; it depends strongly on the wavelength of the radiation. Generally,
the specific rotation is significantly larger at shorter wavelengths.

Two well-known optically active materials are quartz crystals and sugar solu-
tion. Optical activity — including the measurement of the wavelength depen-
dency — can be used to identify chemical species and to measure their con-
centration. With respect to visualization, optical activity is significant since it
can be induced by various external forces, among others electrical fields (Kerr
effect) and magnetic fields (Faraday effect).

6.4.7 Luminescence

Luminescence is the emission of radiation from materials that arises from a
radiative transition from an excited state to a lower state. Fluorescence is lu-
minescence characterized by short lifetimes of the excited state (on the order
of nanoseconds), while the term phosphorescence is used for longer lifetimes
(milliseconds to minutes).

Luminescence is an enormously versatile process because it can be triggered
by various processes. In chemiluminescence, the energy required to generate
the excited state is derived from the energy released by a chemical reaction.
Chemiluminescence normally has only low efficiencies (i. e., number of photons
emitted per reacting molecule) on the order of 1% or less. Flames are the clas-
sic example of a low-efficiency chemiluminescent process. Bioluminescence is
a chemiluminescence in living organisms. Fireflies and the glow of marine mi-
croorganisms are well-known examples. The firefly reaction involves the enzy-
matic oxidation of luciferin. In contrast to most chemiluminescent processes,
this reaction converts almost 100 % of the chemical energy into radiant energy.
Low-level bioluminescent processes are common to many essential biological
processes. Imaging of these processes is becoming an increasingly important
tool to study biochemical processes.

Marking biomolecules with fluorescent dyes is becoming another increasingly
sophisticated tool in biochemistry. It has even become possible to mark indi-
vidual chromosomes or gene sequences in chromosomes with fluorescent dyes.
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Figure 6.14: Quenching of the fluorescence of pyrene butyric acid by dissolved
oxygen: measurements and fit with the Stern-Vollmer equation (dashed line)
[142].

Luminescence always has to compete with other processes that deactivate the
excited state without radiation emission. A prominent radiationless deactiva-
tion process is the energy transfer during the collision of molecules.

Some types of molecules, especially electronegative molecules such as oxygen,
are very efficient in deactivating excited states during collisions. This process
is referred to by the term quenching. The presence of a quenching molecule
causes the fluorescence to decrease. Therefore, the measurement of the fluo-
rescent irradiance can be used to measure the concentration of the quenching
molecule. The dependence of the fluorescent intensity on the concentration of
the quencher is given by the Stern-Vollmer equation:

L 1

L is the fluorescent radiance, Ly the fluorescent radiance when no quencher is
present, C; the quencher concentration, and k the quenching constant depend-
ing suitably on the lifetime of the fluorescent state. Efficient quenching requires
that the excited state have a sufficiently long lifetime.

A fluorescent dye suited for quenching by dissolved oxygen is pyrene butyric
acid (PBA) [208]. The relative fluorescent radiance of PBA as a function of dis-
solved oxygen is shown in Fig. 6.14 [143]. Fluorescence is stimulated by a pulsed
nitrogen laser at 337 nm. The change in fluorescence is rather weak but suffi-
ciently large to enable reliable measurements of the concentration of dissolved

oxygen.

6.4.8 Doppler Effect

A velocity difference between a radiating source and a receiver causes the re-
ceiver to measure a frequency different from that emitted by the source. This
phenomenon is known as the Doppler effect. The frequency shift is directly
proportional to the velocity difference according to

C—ufl_c (us —u,) 7k

Vy=———==Vs; O AV =V, — V= —
1-—ulk/c’

= 6.58
c—ulk (6.58)
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where k = k/ | k|, v is the frequency of the source, v, the frequency measured
at the receiver, k the wave number of the radiation, ¢ the propagation speed of
the radiation, and u; and u, the velocities of the source and receiver relative to
the medium in which the wave is propagating. Only the velocity component in
the direction to the receiver causes a frequency shift.

If the source is moving towards the receiver (u; Tk > 0), the frequency increases
as the wave fronts follow each other faster. A critical limit is reached when the
source moves with the propagation speed of the radiation. Then, the radiation
is left behind the source. For small velocities relative to the wave propagation
speed, the frequency shift is directly proportional to the relative velocity be-
tween source and receiver.

Av = (u; — u,)k. (6.59)

The relative frequency shift Aw/w is given directly by the ratio of the velocity
difference in the direction of the receiver and the wave propagation speed:

Av _ (ws—u)l

v Cc

(6.60)

For electromagnetic waves, the velocity relative to a “medium” is not relevant.
The theory of relativity gives the frequency

Vs . _ 1
Vy = m with Y = 71 — (|u| /C)2 . (661)

For small velocities (ju| << c¢), this equation also reduces to Eq. (6.59) with
u = u; — u,. In this case, acoustic and electromagnetic waves can be treated
equally with respect to the frequency shift due to a relative velocity between
the source and receiver.

6.5 Exercises

Problem 6.1: *Radiometric quantities

Which radiometric quantities describe the following processes:

1. the total radiometric energy emitted by a light source,

2. the radiometric power emitted by a light source per area and solid angle,

3. the radiometric energy received per area and time by an imaging sensor, and

4. the radiometric energy received per area and during an exposure time by an
imaging sensor?

Problem 6.2: *Irradiance

A light source is mounted on a plane area and emits 1 W of radiometric power
isotropically into the hemisphere. Which fraction of this power is received by
a 10 x 10 um? imaging sensor element at a distance of 1 m? How large is the
irradiance of the sensor element?

Problem 6.3: *Color mixing
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Can pure (monochromatic) colors be produced by additive mixing of the three
colors red, green, and blue?

Problem 6.4: *Metameric colors

Imagine a color sensor with three channels, red, green, and blue, that has either
a spectral sensitivity corresponding to line sampling (Fig. 6.3a) or to band sam-
pling (Fig. 6.3b) in Section 6.2.3. For each of the two sensor types, indicate at
least three spectral distributions, which should be as different as possible from
each other, that result in the same color perception.

Problem 6.5: *Color circle

Why do we perceive the color changes from red over yellow, green, and blue back
to red again on a color circle as a continuous transition without discontinuities?
Physically there is a discontinuity in the wavelength if we go from blue to red.

Problem 6.6: *Object features and radiation

Which parameters of the radiation emitted by an object and received by a camera
can tell us about features of the observed object?

Problem 6.7: **Photons

How many photons are received by a 10 x 10 um? image sensor element that is
irradiated with E = 0.1 mW/cm? (about 1/1000 of the irradiation of direct sun
light) for 1 ms? (Hint: the solution requires the Planck constant h, which has a
value of 6.626 - 10734 Js.)

6.6 Further Readings

This chapter covered a variety of topics that are not central to image process-
ing but are important to know for a correct image acquisition. You can refresh
or extend your knowledge about electromagnetic waves by one of the classi-
cal textbooks on the subject, e.g., F. S. Crawford [43], Hecht [76], or Towne
[203]. Stewart [197] and Drury [39] address the interaction of radiation with
matter in the field of remote sensing. Richards [167] gives a survey of imaging
techniques across the electromagnetic spectrum. The topic of infrared imaging
has become an subject of its own and is treated in detail by Gaussorgues [58]
and Holst [81]. Pratt [159] give a good description of color vision with respect
to image processing. The practical aspects of photometry and radiometry are
covered by the “Handbook of Applied Photometry” from DeCusaris [32]. The
oldest application area of quantitative visualization is hydrodynamics. A fasci-
nating insight into flow visualization with many images is given by the “Atlas
of Visualization” edited by Nakayama and Tanida [145].
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7 Image Formation

7.1 Introduction

Image formation includes three major aspects. One is geometric in na-
ture. The question is where we find an object in the image. Essentially,
all imaging techniques project a three-dimensional space in one way or
the other onto a two-dimensional image plane. Thus, basically, imaging
can be regarded as a projection from 3-D into 2-D space. The loss of one
coordinate constitutes a severe loss of information about the geometry
of the observed scene. However, we unconsciously and constantly expe-
rience that our visual system perceives a three-dimensional impression
sufficiently well that we can grasp the three-dimensional world around
us and interact with it. The ease with which this reconstruction task is
performed by biological visual systems might tempt us to think that this
is a simple task. But — as we will see in Chapters 8 and 17 — it is not
that simple.

The second aspect is radiometric in nature. How “bright” is an im-
aged object, and how does the brightness in the image depend on the
optical properties of the object and the image formation system? The
radiometry of an imaging system is discussed in Section 7.5. For the
basics of radiometry see Section 6.2.

The third question is, finally, what happens to an image when we
represent it with an array of digital numbers to process it with a digital
computer? How do the processes that transform a continuous image
into such an array — known as digitization and quantization — limit
the resolution in the image or introduce artifacts? These questions are
addressed in Chapter 9.

7.2 World and Camera Coordinates

7.2.1 Definition

Basically, the position of objects in 3-D space can be described in two dif-

ferent ways (Fig. 7.1). First, we can use a coordinate system that is related

to the scene observed. These coordinates are called world coordinates

and denoted as X' = [X}, X5, X3]". The X| and X} coordinates describe

the horizontal and X; the vertical positions, respectively. Sometimes, an
189
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world coordinates

Figure 7.1: Illustration of world and camera coordinates.

alternative convention with non-indexed coordinates X' = [X',Y’,Z ’]T
is more convenient. Both notations are used in this book.

A second system, the camera coordinates X = [Xl,Xz,X3]T, can be
fixed to the camera observing the scene. The X3 axis is aligned with
the optical axis of the camera system (Fig. 7.1). Physicists are familiar
with such considerations. It is common to discuss physical phenomena
in different coordinate systems. In elementary mechanics, for example,
motion is studied with respect to two observers, one at rest, the other
moving with the object.

Transition from world to camera coordinates generally requires a
translation and a rotation. First, we shift the origin of the world co-
ordinate system to the origin of the camera coordinate system by the
translation vector T (Fig. 7.1). Then we change the orientation of the
shifted system by rotations about suitable axes so that it coincides with
the camera coordinate system. Mathematically, translation can be de-
scribed by vector subtraction and rotation by multiplication of the coor-
dinate vector with a matrix:

X=RX -T). (7.1)

7.2.2 Rotation

Rotation of a coordinate system has two important features. It does
not change the length or norm of a vector and it keeps the coordinate
system orthogonal. A transformation with these features is known in
linear algebra as an orthonormal transform.

The coefficients in a transformation matrix have an intuitive meaning.
This can be seen when we apply the transformation to unit vectors E,
in the direction of the coordinate axes. With E;, for instance, we obtain

ail apz ais 1 an

_, i}

Ei=AE;=| an ax a3 0O |[=1] axn |. (7.2)
as1 asz ass 0 asi
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Thus, the columns of the transformation matrix give the coordinates of
the base vectors in the new coordinate system. Knowing this property,
it is easy to formulate the orthonormality condition that has to be met
by the rotation matrix R:

3
R'™R=1 or Z YiemVim = Ok—1, (7.3)

m=1

where I denotes the identity matrix, whose elements are one and zero
on diagonal and non-diagonal positions, respectively. Using Eq. (7.2),
this equation simply states that the transformed base vectors remain
orthogonal:

E;(TEQ = Ok_1. (7.4)

Equation Eq. (7.3) leaves three matrix elements independent out of
nine. Unfortunately, the relationship between the matrix elements and
three parameters to describe rotation turns out to be quite complex and
nonlinear. A common procedure involves the three Eulerian rotation
angles (¢, 0, ). A lot of confusion exists in the literature about the
definition of the Eulerian angle. We follow the standard mathematical
approach. We use right-hand coordinate systems and count rotation an-
gles positive in the counterclockwise direction. The rotation from the
shifted world coordinate system to the camera coordinate system is de-
composed into three steps (see Fig. 7.2, [62]).

1. Rotation about X3 axis by the angle ¢, X" = Rp X"

cos¢p singp 0
Ry =| —singp cosp 0 (7.5)
0 0 1

2. Rotation about X;' axis by 0, X"" = RpX"":

1 0 0
Ro=1] 0 cosO sinf (7.6)
| 0 —sin@ coso

3. Rotation about X3 axis by ¢/, X = Ry X""":

cosy singy O
Ry =| —siny cosy O (7.7)
0 0 1

Cascading the three rotations, Ry RoRy, yields the matrix
cos Y cos ¢ — cos 0 sin ¢ sin @ cosysing + cos@cos¢psiny  sin 6 siny

—sinycos¢p —cosOsingpcosy —sinysing +cosOcos¢pcosy sinbcosy |.
sin 0 sin ¢ —sin 0 cos ¢ cos 0
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"X

Figure 7.2: Rotation of world coordinates X' to camera coordinates X using the
three Eulerian angles (¢, 0, @) with successive rotations about the a X3, b X,

1

and ¢ X3 axes.

The inverse transformation from camera coordinates to world coor-
dinates is given by the transpose of the above matrix. Since matrix mul-
tiplication is not commutative, rotation is also not commutative. There-
fore, it is important not to interchange the order in which rotations are
performed.

Rotation is only commutative in the limit of an infinitesimal rotation.
Then, the cosine and sine terms reduce to 1 and ¢, respectively. This limit
has some practical applications since minor rotational misalignments
are common.

Rotation about the X3 axis, for instance, can be

1 €0 X; = X|+e&X;
X=RX =| -¢ 1 0 |X or X, = X,—€X] .
0 0 1 X3 = X;
As an example we discuss the rotation of the point [X7,0, O]T. It is ro-

tated into the point [X], in,O]T while the correct position would be
[X] cos g, X7 sing, O]T. Expanding the trigonometric function in a Taylor
series to third order yields a position error of [1/2&2X], 1/653X1,0]T.
For a 512 x 512 image (X; < 256 for centered rotation) and an error
limit of less than 1/20 pixel, ¢ must be smaller than 0.02 or 1.15°. This is
still a significant rotation vertically displacing rows by up to +&X’ = +5
pixels.

7.3 Ideal Imaging: Perspective Projection

7.3.1 The Pinhole Camera

The basic geometric aspects of image formation by an optical system are
well modeled by a pinhole camera. The imaging element of this camera
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+—d —rle—G3——>»
image plane focal plane object plane

Figure 7.3: Image formation with a pinhole camera.

is an infinitesimally small hole (Fig. 7.3). The single light ray coming
from a point of the object at [X1, X2, X317 which passes through this
hole meets the image plane at [x1, X2, —di]T. Through this condition
an image of the object is formed on the image plane. The relationship
between the 3-D world and the 2-D image coordinates [x1,x»]" is given
by

a'x; o d'Xp

X3 , X2 = X; .

The two world coordinates parallel to the image plane are scaled by
the factor d’/X3. Therefore, the image coordinates [x1,x2]" contain
only ratios of world coordinates, from which neither the distance nor
the true size of an object can be inferred.

A straight line in the world space is projected onto a straight line
at the image plane. This important feature can be proved by a simple
geometric consideration. All light rays emitted from a straight line pass
through the pinhole. Consequently they all lie on a plane that is spanned
by the straight line and the pinhole. This plane intersects with the image
plane in a straight line.

All object points on a ray through the pinhole are projected onto a
single point in the image plane. In a scene with several transparent ob-
jects, the objects are projected onto each other. Then we cannot infer
the three-dimensional structure of the scene at all. We may not even be
able to recognize the shape of individual objects. This example demon-
strates how much information is lost by projection of a 3-D scene onto
a 2-D image plane.

Most natural scenes, however, contain opaque objects. Here the ob-
served 3-D space is essentially reduced to 2-D surfaces. These sur-
faces can be described by two two-dimensional functions g(x, x2) and
X3(x1,x2) instead of the general description of a 3-D scalar gray value
image g (X1, X2, X3). A surface in space is completely projected onto the
image plane provided that not more than one point of the surface lies
on the same ray through the pinhole. If this condition is not met, parts

X1 = (78)
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occluded space

object 1
object 2

optical axis

projection
center

occluded surface

Figure 7.4: Occlusion of more distant objects and surfaces by perspective pro-
Jection.

XA

projection

image plane

Figure 7.5: Perspective projection with x-rays.

of the surface remain invisible. This effect is called occlusion. The oc-
cluded 3-D space can be made visible if we put a point light source at the
position of the pinhole (Fig. 7.4). Then the invisible parts of the scene
lie in the shadow of those objects that are closer to the camera.

As long as we can exclude occlusion, we only need the depth map
X3(x1,x2) to reconstruct the 3-D shape of a scene completely. One way
to produce it — which is also used by our visual system — is by stereo
imaging, i.e., observation of the scene with two sensors from different
points of view (Section 8.2.1).

7.3.2 Projective Imaging

Imaging with a pinhole camera is essentially a perspective projection,
because all rays must pass through one central point, the pinhole. Thus
the pinhole camera model is very similar to imaging with penetrating
rays, such as x-rays, emitted from a point source (Fig. 7.5). In this case,
the object lies between the central point and the image plane.
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The projection equation corresponds to Eq. (7.8) except for the sign:

X d' X,
1
X
X2 — XI = , 3 . (7.9)
e X2 a’' X
3
X3

The image coordinates divided by the image distance d; are called
generalized image coordinates:

X1 - X2
= ’ XZ = 5,
a’ a’

Generalized image coordinates are dimensionless and denoted by a tilde.
They are equal to the tangent of the angle with respect to the optical axis
of the system with which the object is observed. These coordinates ex-
plicitly take the limitations of the projection onto the image plane into
account. From these coordinates, we cannot infer absolute positions
but know only the angle at which the object is projected onto the im-
age plane. The same coordinates are used in astronomy. The general
projection equation of perspective projection Eq. (7.9) then reduces to

X1 (7.10)

X1
X1 —
. X3
X=1] Xo — X = . (7.11)
X
X3 —=
X3

We will use this simplified projection equation in all further consider-
ations. For optical imaging, we just have to include a minus sign or, if
speaking geometrically, reflect the image at the origin of the coordinate
system.

7.4 Real Imaging

7.4.1 Basic Geometry of an Optical System

The model of a pinhole camera is an oversimplification of an imaging
system. A pinhole camera forms an image of an object at any distance
while a real optical system forms a sharp image only within a certain dis-
tance range. Fortunately, the geometry even for complex optical systems
can still be modeled with a small modification of perspective projection
as illustrated in Figs. 7.6 and 7.7. The focal plane has to be replaced
by two principal planes. The two principal planes meet the optical axis
at the principal points. A ray directed towards the first principal point
appears — after passing through the system — to originate from the
second principal point without angular deviation (Fig. 7.6). The distance
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Figure 7.6: Black box model of an optical system.
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Figure 7.7: Optical imaging with an optical system modeled by its principal points
P, and P» and focal points Fy and F». The system forms an image that is a distance
d’ behind F, from an object that is the distance d in front of F,.

between the two principal planes thus models the axial extension of the
optical system.

As illustrated in Fig. 7.6, rays between the two principal planes are
always parallel and parallel rays entering the optical system from left and
right meet at the second and first focal point, respectively. For practical
purposes, the following definitions also are useful: The effective focal
length is the distance from the principal point to the corresponding focal
point. The front focal length and back focal length are the distances from
the first and last surface of the optical system to the first and second
focal point, respectively.

The relation between the object distance and the image distance be-
comes very simple if they are measured from the focal points (Fig. 7.7),

(7.12)
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This is the Newtonian form of the image equation. The possibly better
known Gaussian form uses the distances as to the principal points:
1 1

1
d+fd+f f

(7.13)

7.4.2 Lateral and Axial Magnification

The lateral magnification m; of an optical system is given by the ratio
of the image size, x, to the object size, X:

moX_f_d _f+d
X TaT f T f+a

(7.14)

The lateral magnification m,; is proportional to d": d' = fm; and in-
versely proportional to d: d’ = f/m;. Therefore it is easy to compute
the distance to the object (d) and the distance of the image plane to
the focal plane (d’) from a given magnification. Three illustrative ex-
amples follow: object at infinity (m; = 0): 4’ = 0, magnification 1/10
(m; =1/10): 4’ = f/10, one-to-one imaging: (m; =1): d' =d = f.

A less well-known quantity is the axial magnification that relates the
positions of the image plane and object plane to each other. Thus the
axial magnification gives the magnification along the optical axis. If we
shift a point in the object space along the optical axis, how large is the
shift of the image plane? In contrast to the lateral magnification, the axial
magnification is not constant with the position along the optical axis.
Therefore the axial magnification is only defined in the limit of small
changes. We use slightly modified object and image positions d + AX3
and d’' — Ax3 and introduce them into Eq. (7.12). Then a first-order Taylor
expansion in AX3 and Axs3 (assuming that AX3 < d and Ax3 < d') yields

Ax a’
5&23’ (7.15)
and the axial magnification m, is given by
a’ 2 qae
,Wzd:;:ﬂ:mi (7.16)

7.4.3 Depth of Focus and Depth of Field

The image equations Egs. (7.12) and (7.13) determine the relation be-
tween object and image distances. If the image plane is slightly shifted
or the object is closer to the lens system, the image is not rendered
useless. It rather gets blurred. The degree of blurring depends on the
deviation from the distances given by the image equation.
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Figure 7.8: Illustration of the a depth of focus and b depth of field with an on-axis
point object.

The concepts of depth of focus and depth of field are based on the
fact that a certain degree of blurring does not affect the image quality.
For digital images it is naturally given by the size of the sensor elements.
It makes no sense to resolve smaller structures. We compute the blurring
in the framework of geometrical optics using the image of a point object
as illustrated in Fig. 7.8a. At the image plane, the point object is imaged
to a point. It smears to a disk with the radius € with increasing distance
from the image plane. Introducing the f-number n s of an optical system
as the ratio of the focal length and diameter of lens aperture 2

ny = % (7.17)

we can express the radius of the blur disk as:

1
€ = MmAXg, (718)
where Axs is the distance from the (focused) image plane. The range
of positions of the image plane, [d" — Ax3,d’ + Axs], for which the ra-
dius of the blur disk is lower than €, is known as the depth of focus.
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Equation (7.18) can be solved for Ax3 and yields

4

Ax3 =2ny (1+jlc>6:2nf(1+ml)e, (7.19)
where m; is the lateral magnification as defined by Eq. (7.14). Equa-
tion (7.19) illustrates the critical role of the ng-number and magnifica-
tion for the depth of focus. Only these two parameters determine for a
given € the depth of focus and depth of field.

Of even more importance for practical usage than the depth of focus
is the depth of field. The depth of field is the range of object positions
for which the radius of the blur disk remains below a threshold € at a
fixed image plane (Fig. 7.8b). With Egs. (7.12) and (7.19) we obtain

f? f?
d+ X3 = A FAxs A F2np(l+me’ (7.20)

In the limit of AX3 <« d, Eq. (7.20) reduces to

AXs ~ 21 - 1 ;ane. (7.21)

l

If the depth of field includes the infinite distance, the minimum distance
for a sharp image is

f? f?

dne(l +mye ~ dnyse’

Amin = (7.22)
A typical high resolution CCD camera has sensor elements, which
are about 10 x 10 ym in size. Thus we can allow for a radius of the
unsharpness disc of 5 um. Assuming a lens with an f-number of 2 and
a focal length of 15 mm, according to Eq. (7.21) we have a depth of field
of = 0.2m at an object distance of 1.5 m, and according to Eq. (7.22) the
depth of field reaches from 5 m to infinity. This example illustrates that
even with this small f-number and the relatively short distance, we may
obtain a large depth of field.
For high magnifications as in microscopy, the depth of field is very
small. With m; > 1, Eq. (7.21) reduces to
2nye

AX3 =~ . (7.23)
mi

With a 50-fold enlargement (m; = 50) and ny = 1, we obtain the extreme
low depth of field of only 0.2 um.

Generally, the whole concept of depth of field and depth of focus as
discussed here is only valid in the limit of geometrical optics. It can only
be used for blurring that is significantly larger than that caused by the
aberrations or diffraction of the optical system (Section 7.6.3).
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Figure 7.9: a Standard diverging imaging with stop at the principal point; b
telecentric imaging with stop at the second focal point. On the right side it is
illustrated how a short cylindrical tube whose axis is aligned with the optical axis
is imaged with the corresponding set up.
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7.4.4 Telecentric Imaging

In a standard optical system, a converging beam of light enters an optical
system. This setup has a significant disadvantage for optical gauging
(Fig. 7.9a). The object appears larger if it is closer to the lens and smaller
if it is farther away from the lens. As the depth of the object cannot be
inferred from its image, either the object must be at a precisely known
depth or measurement errors are unavoidable.

A simple change in the position of the aperture stop from the prin-
cipal point to the first focal point solves the problem and changes the
imaging system to a telecentric lens (Fig. 7.9b). By placing the stop at
this point, the principal rays (ray passing through the center of the aper-
ture) are parallel to the optical axis in the object space. Therefore, slight
changes in the position of the object do not change the size of the image
of the object. The farther it is away from the focused position, the more
it is blurred, of course. However, the center of the blur disk does not
change the position.

Telecentric imaging has become an important principle in machine
vision. Its disadvantage is, of course, that the diameter of a telecentric
lens must be at least of the size of the object to be imaged. This makes
telecentric imaging very expensive for large objects.

Figure 7.9 illustrates how a cylinder aligned with the optical axis with
a thin wall is seen with a standard lens and a telecentric lens. Standard
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imaging sees the cross-section and the inner wall and telecentric imaging
the cross-section only.

The discussion of telecentric imaging emphasizes the importance of
stops in the construction of optical systems, a fact that is often not
adequately considered.

7.4.5 Geometric Distortion

A real optical system causes deviations from a perfect perspective pro-
jection. The most obvious geometric distortions can be observed with
simple spherical lenses as barrel- or cushion-shaped images of squares.
Even with a corrected lens system these effects are not completely sup-
pressed.

This type of distortion can easily be understood by considerations
of symmetry. As lens systems show cylindrical symmetry, concentric
circles only suffer a distortion in the radius. This distortion can be ap-
proximated by
- x

1+ k3lx|?”

Depending on whether k3 is positive or negative, barrel- and cushion-
shaped distortions in the images of squares will be observed. Commer-
cial TV lenses show a radial deviation of several image points (pixels) at
the edge of the sensor. If the distortion is corrected with Eq. (7.24), the
residual error is less than 0.06 image points [121].

This high degree of correction, together with the geometric stability
of modern CCD sensors, accounts for subpixel accuracy in distance and
area measurements without using expensive special lenses. Lenz [122]
discusses further details which influence the geometrical accuracy of
CCD sensors.

Distortions also occur if non-planar surfaces are projected onto the
image plane. These distortions prevail in satellite and aerial imagery.
Thus correction of geometric distortion in images is a basic topic in re-
mote sensing and photogrammetry [168].

Accurate correction of the geometrical distortions requires shifting
of image points by fractions of the distance between two image points.
We will deal with this problem later in Section 10.5 after we have worked
out the knowledge necessary to handle it properly.

x (7.24)

7.5 Radiometry of Imaging

If is not sufficient to know only the geometry of imaging. Equally impor-
tant is to consider how the irradiance at the image plane is related to the
radiance of the imaged objects and which parameters of an optical sys-
tem influence this relationship. For a discussion of the fundamentals of
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Figure 7.10: An optical system receives a flux density that corresponds to the
product of the radiance of the object and the solid angle subtended by the pro-
Jected aperture as seen from the object. The flux emitted from the object area A
is imaged onto the image area A’.

radiometry, especially all terms describing the properties of radiation,
we refer to Section 6.2.

The path of radiation from a light source to the image plane involves
a chain of processes (see Fig. 6.1). In this section, we concentrate on the
observation path (compare Fig. 6.1), i. e., how the radiation emitted from
the object to be imaged is collected by the imaging system.

7.5.1 Object Radiance and Image Irradiance

An optical system collects part of the radiation emitted by an object
(Fig. 7.10). We assume that the object is a homogeneous Lambertian
radiator with the radiance L. The aperture of the optical system appears
from the object to subtend a certain solid angle Q3. The projected circular
aperture area is 12 cos @ at a distance (d + f)/ cos 0. Then, according
to Eq. (6.4), a flux
r2 cos3 0
P=AQL=A— 1L 7.25
(d+ f)? (7:25)
enters the optical system. The radiation emitted from the area A pro-
jected onto the object plane, i.e. A/ cos 6 is imaged onto the area A’.
Therefore, the flux ® must be divided by the area A’ in order to compute
the image irradiance E’. After Eq. (7.14), the area ratio can be expressed
as
A/ cos 1 (f +d)?
—_— == 7.26
A S ml T (frd)e (7:26)
We further assume that the optical system has a transmittance t. In-
serting Eq. (7.26) into Eq. (7.25) finally leads to the following object ra-
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diance/image irradiance relation:

E’ q) =t1T(

T A f+a

This fundamental relationship states that the image irradiance is pro-
portional to the object radiance. This is the base for the linearity of op-
tical imaging. The optical system is described by two simple terms: its
(total) transmittance t and the ratio of the aperture radius to the distance
of the image from the first principal point. For distant objects d > f,
d’ <« f,Eq. (7.27) reduces to

2
) cos*O L. (7.27)

4
E=tn®® 0 s (7.28)
4n

S

using the f-number ny (Eq. (7.17)). For real optical systems, equations
Egs. (7.27) and (7.28) are only an approximation. If part of the incident
beam is cut off by additional apertures or limited lens diameters (vi-
gnetting), the fall-off is even steeper at high angles 6. On the other hand,
a careful design of the position of the aperture can make the fall-off less
steep than cos? 8. As also the residual reflectivity of the lens surfaces
depends on the angle of incidence, the true fall-off depends strongly on
the design of the optical system and is best determined experimentally
by a suitable calibration setup.

7.5.2 Invariance of Radiance

The astonishing fact that the image irradiance is so simply related to the
object radiance has its cause in a fundamental invariance. An image has
a radiance just like a real object. It can be taken as a source of radiation
by further optical elements. A fundamental theorem of radiometry now
states that the radiance of an image is equal to the radiance of the object
times the transmittance of the optical system.

The theorem can be proved using the assumption that the radiative
flux ® through an optical system is preserved except for absorption in
the system leading to a transmittance less than one. The solid angles
that the object and image subtend in the optical system are

Q=Ag/(d+ f)?> and Q = Ay/(d + f)?, (7.29)

where A is the effective area of the aperture.
The flux emitted from an area A of the object is received by the area
A" = A(d + f)?/(d + f)? in the image plane (Fig. 7.11a). Therefore, the

radiances are o o
- _ ¥ 2
L QA ~ Agadth

td td

r — 2
L= oar = aga@d+hHs

(7.30)
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Figure 7.11: Illustration of radiance invariance: a The product AQ is the same
in object and image space. b Change of solid angle, when a beam enters an
optically denser medium.

and the following invariance holds:
L'=tL for n' =n. (7.31)

The radiance invariance of this form is only valid if the object and
image are in media with the same refractive index (n" = n). If abeam with
radiance L enters a medium with a higher refractive index, the radiance
increases as the rays are bent towards the optical axis (Fig. 7.11b). Thus,
more generally the ratio of the radiance and the refractive index squared
remains invariant:

L'/n'? = tL/n? (7.32)

From the radiance invariance, we can immediately infer the irradiance
on the image plane to be

-
f+a

2
E=L'Q =L ( ) = L'mrsin? o = tL1r sin® . (7.33)

This equation does not consider the fall-off with cos? 8 in Eq. (7.27) be-
cause we did not consider oblique principal rays.

Radiance invariance considerably simplifies computation of image ir-
radiance and the propagation of radiation through complex optical sys-
tems. Its fundamental importance can be compared to the principles in
geometric optics that radiation propagates in such a way that the optical
path nd (real path times the index of refraction) takes an extreme value.
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go(X)

9o(X")

object plane optical system image plane

Figure 7.12: Image formation by convolution with the point spread function
h(x). A point at X' in the object plane results in an intensity distribution with a
maximum at the corresponding point x' on the image plane. At a point x on the
image plane, the contributions from all points x’, i.e., g;(x")h(x — x"), must be
integrated.

7.6 Linear System Theory of Imaging

In Section 4.2 we discussed linear shift-invariant filters (convolution operators)
as one application of linear system theory. Imaging is another example that can
be described with this powerful concept. Here we will discuss optical imaging
in terms of the 2-D and 3-D point spread function (Section 7.6.1) and optical
transfer function (Section 7.6.2).

7.6.1 Point Spread Function

Previously it was seen that a point in the 3-D object space is not imaged onto
a point in the image space but onto a more or less extended area with vary-
ing intensities. Obviously, the function that describes the imaging of a point is
an essential feature of the imaging system and is called the point spread func-
tion, abbreviated as PSF. We assume that the PSF is not dependent on position.
Then optical imaging can be treated as a linear shift-invariant system (LSI) (Sec-
tion 4.2).

If we know the PSF, we can calculate how any arbitrary 3-D object will be im-
aged. To perform this operation, we think of the object as decomposed into
single points. Figure 7.12 illustrates this process. A point X’ at the object plane
is projected onto the image plane with an intensity distribution corresponding
to the point spread function h. With g;(x’) we denote the intensity values at
the object plane g, (X’) projected onto the image plane but without any defects
through the imaging. Then the intensity of a point x at the image plane is com-
puted by integrating the contributions from the point spread functions which
have their maximums at x" (Fig. 7.12):

gi(x) = Jg; (x"Yh(x — x)d®x" = (g; * h)(x). (7.34)
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The operation in Eq. (7.34) is known as a convolution. Convolutions play an
essential role in image processing. Convolutions are not only involved in image
formation but also in many image-processing operations. In case of image for-
mation, a convolution obviously “smears” an image and reduces the resolution.

This effect of convolutions can be most easily demonstrated with image struc-
tures that show periodic gray value variations. As long as the repetition length,
the wavelength, of this structure is larger than the width of the PSF, it will suffer
no significant changes. As the wavelength decreases, however, the amplitude
of the gray value variations will start to decrease. Fine structures will finally be
smeared out to such an extent that they are no longer visible. These considera-
tions emphasize the important role of periodic structures and lead naturally to
the introduction of the Fourier transform which decomposes an image into the
periodic gray value variations it contains (Section 2.3).

Previous considerations showed that formation of a two-dimensional image on
the image plane is described entirely by its PSF. In the following we will extend
this concept to three dimensions and explicitly calculate the point spread func-
tion within the limit of geometric optics, i.e., with a perfect lens system and
no diffraction. This approach is motivated by the need to understand three-
dimensional imaging, especially in microscopy, i. e., how a point in the 3-D ob-
ject space is imaged not only onto a 2-D image plane but into a 3-D image space.

First, we consider how a fixed point in the object space is projected into the
image space. From Fig. 7.8 we infer that the radius of the unsharpness disk is
given by

€ =—. (7.35)

The index i of € indicates the image space. Then we replace the radius of the
aperture 7 by the maximum angle under which the lens collects light from the
point considered and obtain

€ = @m tan «. (7.36)
d;

This equation gives us the edge of the PSF in the image space. It is a double
cone with the x3 axis in the center. The tips of both the cones meet at the
origin. Outside the two cones, the PSF is zero. Inside the cone, we can infer
the intensity from the conservation of radiation energy. Since the radius of the
cone increases linearly with the distance to the plane of focus, the intensity
within the cone decreases quadratically. Thus the PSF h;(x) in the image space
is given by

Iy H(xf+x§)1/2

hi(x)
! n(%‘;m tan )2 2%x3 tan

7.37
I() 4 ( )

b
n(%z tan )2 ZZ—‘;ztan(x

where Ij is the light intensity collected by the lens from the point, and II is the
box function, which is defined as

II(x) =

{ 1 x| <1/2 (7.38)

0 otherwise
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Figure 7.13: a 3-D PSF and b 3-D OTF of optical imaging with a lens, back-
projected into the object space. Lens aberrations and diffraction effects are ne-
glected.

The last expression in Eq. (7.37) is written in cylindrical coordinates (v, ¢, z) to
take into account the circular symmetry of the PSF with respect to the x3 axis.
In a second step, we discuss what the PSF in the image space refers to in the
object space, since we are interested in how the effects of the imaging are pro-
jected back into the object space. We have to consider both the lateral and axial
magnification. First, the image, and thus also &, are larger than the object by the
factor d;/d,. Second, we must find the planes in object and image space corre-
sponding to each other. This problem has already been solved in Section 7.4.2.
Equation Eq. (7.16) relates the image to the camera coordinates. In effect, the
back-projected radius of the unsharpness disk, €,, is given by

€, = X3 tan &, (7.39)
and the PSF, back-projected into the object space, by

Iy (X + X512 I o R
m(Xstan®)?2 2Xstanx ~ m(Ztanx)? 2Ztano’

hy(X) = (7.40)

The double cone of the PSF, back-projected into the object space, shows the
same opening angle as the lens (Fig. 7.13). In essence, ho(x) in Eq. (7.40) gives
the effect of optical imaging disregarding geometric scaling.

7.6.2 Optical Transfer Function

Convolution with the PSF in the space domain is a quite complex operation. In
Fourier space, however, it is performed as a multiplication of complex num-
bers. In particular, convolution of the 3-D object g,(X) with the PSF h,(X)
corresponds in Fourier space to a multiplication of the Fourier transformed ob-
ject g, (k) with the Fourier transformed PSF, the optical transfer function or OTF
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ﬁa(k). In this section, we consider the optical transfer function in the object
space, i.e., we project the imaged object back into the object space. Then the
image formation can be described by:

Imaged object Imaging Object
Space domain Go(X) = ho(X) x g,(X) (7.41)
Fourier domain Jo(k) = hotk) - g,k).

This correspondence means that we can describe optical imaging with either
the point spread function or the optical transfer function. Both descriptions
are complete. As with the PSF, the OTF has an illustrative meaning. As the
Fourier transform decomposes an object into periodic structures, the OTF tells
us how the optical imaging process changes these periodic structures. An OTF
of 1 for a particular wavelength means that this periodic structure is not affected
at all. If the OTF is 0, it disappears completely. For values between 0 and 1 it is
attenuated correspondingly. Since the OTF is generally a complex number, not
only the amplitude of a periodic structure can be changed but also its phase.
Direct calculation of the OTF is awkward.

Here several features of the Fourier transform are used, especially its linearity
and separability, to decompose the PSF into suitable functions, which can be
transformed more easily. Two possibilities are demonstrated. They are also
more generally instructive, since they illustrate some important features of the
Fourier transform.

The first method for calculating the OTF decomposes the PSF into a bundle of
0 lines intersecting at the origin of the coordinate system. They are equally dis-
tributed in the cross-section of the double cone. We can think of each ¢ line as
being one light ray. Without further calculations, we know that this decomposi-
tion gives the correct quadratic decrease in the PSF, because the same number
of 6 lines intersect a quadratically increasing area. The Fourier transform of a 6
line is a 6 plane which is perpendicular to the line (> R5). Thus the OTF is com-
posed of a bundle of § planes. They intersect the k, k> plane at a line through
the origin of the k space under an angle of at most «. As the Fourier transform
preserves rotational symmetry, the OTF is also circular symmetric with respect
to the k3 axis. The OTF fills the whole Fourier space except for a double cone
with an angle of 11/2 — . In this sector the OTF is zero. The exact values of the
OTF in the non-zero part are difficult to obtain with this decomposition method.
We will infer it with another approach, based on the separability of the Fourier
transform. We think of the double cone as layers of disks with varying radii
which increase with | x3|. In the first step, we perform the Fourier transform only
in the x1x; plane. This transformation yields a function with two coordinates in
the k space and one in the x space, (k1, ko, x3), respectively ( g, @, z) in cylinder
coordinates. Since the PSF Eq. (7.40) depends only on # (rotational symmetry
around the z axis), the two-dimensional Fourier transform corresponds to a
one-dimensional Hankel transform of zero order [14]:

Iy v
h(r,2) Tr(ztan(x)ZH(ZZtan(x
(7.42)
fl(q,z) _ IOJ1(2Trzq tan )

TZzq tan &
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The Fourier transform of the disk thus results in a function that contains the
Bessel function J; (> R5).

As a second step, we perform the missing one-dimensional Fourier transform in
the z direction. Equation Eq. (7.42) shows that h(q, z) is also a Bessel function
in z. This time, however, the Fourier transform is one-dimensional. Thus we
obtain not a disk function but a circle function (> R5):

11(23677”‘) o—s 2(1—k2)1/zn(§). (7.43)

If we finally apply the Fourier transform scaling theorem (> R4),

if fx) o—e  flk),
) (7.44)
then f(ax) o—e 1 ( K ) ,

lal” \a

we obtain

> 1/2 ]
h(q,k3)—210(1 k“‘) H(kj) (7.45)

mlgtanx] \©  g2tan? « 2q tan

A large part of the OTF is zero. This means that spatial structures with the
corresponding directions and wavelengths completely disappear. In particular,
this is the case for all structures in the z direction, i.e., perpendicular to the
image plane. Such structures get completely lost and cannot be reconstructed
without additional knowledge.

We can only see 3-D structures if they also contain structures parallel to the
image plane. For example, it is possible to resolve points or lines that lie above
each other. We can explain this in the x space as well as in the k space. The
PSF blurs the points and lines, but they can still be distinguished if they are not
too close to each other.

Points or lines are extended objects in Fourier space, i. e., constants or planes.
Such extended objects partly coincide with the non-zero parts of the OTF and
thus will not vanish entirely. Periodic structures up to an angle of « to the
k1k> plane, which just corresponds to the opening angle of the lens, are not
eliminated by the OTF. Intuitively, we can say that we are able to recognize all
3-D structures that we can actually look into. All we need is at least one ray
that is perpendicular to the wave number of the structure and, thus, run in the
direction of constant gray values.

7.6.3 Diffraction-Limited Optical Systems

Light is electromagnetic radiation and as such subject to wave-related phenom-
ena. When a parallel bundle of light enters an optical system, it cannot be
focused to a point even if all aberrations have been eliminated. Diffraction at
the aperture of the optical system blurs the spot at the focus to a size of at
least the order of the wavelength of the light. An optical system for which the
aberrations have been suppressed to such an extent that it is significantly lower
than the effects of diffraction is called diffraction-limited.
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Figure 7.14: Diffraction of a planar wave front at the aperture stop of an optical
system. The optical system converts the incoming planar wave front into spher-
ical wave fronts in all directions converging at the image plane. For further
details, see text.

A rigorous treatment of diffraction according to Maxwell’s equations is mathe-
matically quite involved ([13], [41, Chapters 9 and 10], and [87, Chapter 3]). The
diffraction of a planar wave at the aperture of lenses, however, can be treated
in a simple approximation known as Fraunhofer diffraction. It leads to a fun-
damental relation.

We assume that the aperture of the optical system is pierced by a planar wave
front coming from an object at infinity (Fig. 7.14). The effect of a perfect lens
is that it bends the planar wave front into a spherical wave front with its origin
at the focal point at the optical axis. Diffraction at the finite aperture of the
lens causes light also to go in other directions. This effect can be taken into
account by applying Huygens’ principle at the aperture plane. This principle
states that each point of the wave front can be taken as the origin of a new in-
phase spherical wave. All these waves superimpose at the image plane to form
an image of the incoming planar wave. The path lengths from a point x" at the
image aperture to the focal point and to a point with an offset x at the image
plane (Fig. 7.14) are given by

S=4x2+y?2+ f2 and s’ = \/(x’ -x)2+ (' —y)2+ f2, (7.46)

respectively. The difference between these two pathes under the condition that
x < f,1.e, neglecting quadratic terms in x and v, yields

§ s XX YV (7.47)
S
This path difference results in a phase difference of
_2m(s’=s)  2mxx'+yy’)  2m(xx’)

for a wave with the wavelength A.

Now we assume that ¢’ (x’) is the amplitude distribution of the wave front at
the aperture plane. Note that this is a more general approach than just using
a simple box function for an aperture stop. We want to treat the more general
case of arbitrarily varying amplitude of the wave front or any type of aperture
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functions. If we use a complex-valued ' (x’), it is also possible to include
effects that result in a phase shift in the aperture.

Then the superimposition of all spherical waves ' (x’) at the image plane with
the phase shift given by Eq. (7.48) yields

Y(x) = J J(,U'(x')exp (—2171)};

—00—00

) d?x’. (7.49)

This equation means that the amplitude and phase distribution ¢ (x) at the
focal plane is simply the 2-D Fourier transform (see Eq. (2.32)) of the amplitude
and phase function ¢’ (x’) at the aperture plane.

For a circular aperture, the amplitude distribution is given by

4 4 |x, | )
=11 7.
v =1 (50, (7.50)
where 7 is the radius of the aperture. The Fourier transform of Eq. (7.50) is
given by the Bessel function of first order (> R4):

L (2txr /[ fA)

X7/ fA (751

Y(x) =y

The irradiance E on the image plane is given by the square of the amplitude:

M>Z_ 752

E _ 2 _ 2
(x) = lw(x)? = ¢ ( xr/F\
The diffraction pattern has a central spot that contains 83.9 % of the energy and
encircling rings with decreasing intensity (Fig. 7.15a). The distance from the
center of the disk to the first dark ring is

Ax = 0.61 - %/\ =1.22Any. (7.53)

At this distance, two points can clearly be separated (Fig. 7.15b). This is the
Rayleigh criterion for resolution of an optical system. The resolution of an
optical system can be interpreted in terms of the angular resolution of the in-
coming planar wave and the spatial resolution at the image plane. Taking the
Rayleigh criterion Eq. (7.53), the angular resolution A0y = Ax/ f is given as

Afy = 0.61%. (7.54)

Thus, the angular resolution does not depend at all on the focal length but
only the aperture of the optical system in relation to the wavelength of the
electromagnetic radiation.

In contrast to the angular resolution, the spatial resolution Ax at the image
plane, depends according to Eq. (7.53) only on the relation of the radius of the
lens aperture to the distance f of the image of the object from the principal
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Figure 7.15: a Irradiance E(x) of the diffraction pattern (“Airy disk”) at the
focal plane of an optical system with a uniformly illuminated circular aperture
according to Eq. (7.52). b Illlustration of the resolution of the image of two points
at a distance x [ (ngA) = 1.22.

point. Instead of the f-number we can use in Eq. (7.53) the numerical aperture
which is defined as

na=nsin60=2—n. (7.55)
ny
We assume now that the image-sided index of refraction n may be different

from 1. Here 0, is the opening angle of the light cone passing from the center
of the image plane through the lens aperture. Then

Ax = 0.61 A, . (7.56)

Na

Therefore, the absolute resolution at the image plane does not at all depend
again on the focal length of the system but only the numerical aperture of the
image cone.

As the light way can be reversed, the same arguments apply for the object plane.
The spatial resolution at the object plane depends only on the numerical aper-
ture of the object cone, i.e., the opening angle of the cone entering the lens

aperture:

AX = O.GIA. (7.57)

Ng
These simple relations are helpful to evaluate the performance of optical sys-
tems. Since the maximum numerical aperture of optical systems is about one,
no smaller structures than about half the wavelength can be resolved.

7.7 Homogeneous Coordinates

In computer graphics, the elegant formalism of homogeneous coordinates [44,
54, 136] is used to describe all the transformations we have discussed so far,
i.e., translation, rotation, and perspective projection, in a unified framework.
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This formalism is significant, because the whole image formation process can
be expressed by a single 4 X 4 matrix.

A four-component column vector represents homogeneous coordinates
X' = [tX],tX5, X5, 1], (7.58)

from which ordinary three-dimensional coordinates are obtained by dividing
the first three components of the homogeneous coordinates by the fourth. Any
arbitrary transformation can be obtained by premultiplying the homogeneous
coordinates with a 4 X 4 matrix M. In particular, we can obtain the image coor-
dinates

X = [SX],SXQ,SXg,S]T (7.59)

by
x = MX. (7.60)

As matrix multiplication is associative, we can view the matrix M as composed
of many transformation matrices, performing such elementary transformations
as translation, rotation around a coordinate axis, perspective projection, and
scaling. The transformation matrices for the elementary transforms are readily
derived:

1 0 0 T
01 0 T . T
T = 00 1 Ty Translation by [T7, T», T3]
0 0 0 1
1 0 0 0
0 cos® -—-sinf® O . .
Ry, = 0 sin® cos® O Rotation about X; axis by 0
0 0 0 1
[ cos¢p O singp 0 T
0 1 0 0 . .
Ry, = _sing 0 cosp 0 Rotation about X» axis by ¢
L 0 0 0 1 ]
(7.61)
[ cosy —sing 0 O 7
singy cosy O O . .
Ry, = 0 0 1 0 Rotation about X3 axis by g
0 0 0 1 |
s1 0 0 O
_ S2 0 0 .
s = 0 0 s3 0 Scaling
0O 0 0 1
1 0 0 0
P - 0 1 0 0 P i et
= 0 0 1 0 erspective projection.
0 0 -1/d 1
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Perspective projection is formulated slightly differently from the definition in
Eq. (7.11). Premultiplication of the homogeneous vector

X = [tX1,t X2, tX3,t]"
with P yields

tX1,tXp,tX3,t (7.62)

d — X3 ]T
L a’ ’
from which we obtain the image coordinates by division through the fourth

coordinate
d!

X1 }: =X (7.63)

a - X;

From this equation we can see that the image plane is positioned at the origin,
since if X3 = 0, both image and world coordinates are identical. The center of
projection has been shifted to [0, 0, -d’1".

Complete transformations from world coordinates to image coordinates can be
composed of these elementary matrices. Strat [198], for example, proposed the
following decomposition:

M = CSPR;R,R,T. (7.64)

The scaling S and cropping (translation) C are transformations taking place in
the two-dimensional image plane. Strat [198] shows how the complete trans-
formation parameters from camera to world coordinates can be determined in
anoniterative way from a set of calibration points whose positions in the space
are exactly known. In this way, an absolute calibration of the outer camera pa-
rameters position and orientation and the inner parameters piercing point of
the optical axis, focal length, and pixel size can be obtained.

7.8 Exercises

Problem 7.1: **Imaging with a pinhole camera

1. What is the relation between object and image coordinates for a pinhole cam-
era?

2. What geometric object is the image of a straight line with the points A and
B, a triangle with the points A, B, and C, and of a planar and nonplanar
quadrangle?

3. Assume that you know the length of the straight line and the position A of

one of the end points in world coordinates. Is it then possible to determine
the second end point B from the image coordinates a and b?

Problem 7.2: *Geometry of imaging with x-rays

Can the imaging with penetrating x-rays that emerge from a single point and
are measured at a projection screen also be described by projective imaging?
The object is now located between the x-ray source and the projection screen.
How is the relation between image and world coordinates in this case? Prepare
a sketch of the geometry.
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Problem 7.3: ***Depth of field with x-ray imaging

Is it possible to limit the depth of field with x-ray imaging? Hint: You cannot
use any lens with x-rays. The depth of field is related to the fact that the lens
collects rays from a point of the object that are going into a range of directions.
How can this principle be used with a non-imaging system? The object to be
inspected does not move.

Problem 7.4: *High depth of field

You are facing the following problem. An object should be measured with the
maximum possible depth of field. The illumination conditions, which you can-
not change, limit the aperture ny to a maximum value of 4. The object has an
extension of 320 x 240 mm? and must fill the whole image size when imaged
from a distance of 2.0 = 0.5m. Two cameras with a resolution of 640 x 480
pixels are at your disposal. The pixel size of one camera is 9.9 x 9.9 um?, that
of the other camera 5.6 x 5.6 um? (> R2). You can use any focal length f of the
lens. Questions:

1. Which focal length do you select?

2. Which of the two cameras delivers the larger depth of field?

Problem 7.5: *Diffraction-limited resolution

At which aperture 7 is the diffraction-limited resolution equal to the size of
the sensor element? Use 4.4 x 4.4 um? and 6.7 x 6.7 um? large sensor elements.
What happens at larger ny values?

7.9 Further Readings

In this chapter, only the basic principles of imaging techniques are discussed.
A more detailed discussion can be found in Jahne [91] or Richards [167]. The
geometrical aspects of imaging are also of importance for computer graphics
and are therefore treated in detail in standard textbooks on computer graph-
ics, e.g. Watt [213] or Foley et al. [54]. More details about optical engineering
can be found in the following textbooks: lizuka [87] (especially about Fourier
optics) and Smith [193]. Riedl [170] focuses on the design of infrared optics. In
this chapter, the importance of linear system theory has been stressed for the
description of an optical system. Linear system theory has widespread applica-
tions throughout science and engineering, see, e. g., Close and Frederick [26] or
Dorf and Bishop [38].
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8 3-D Imaging
8.1 Basics

In this chapter we discuss various imaging techniques that can retrieve
the depth coordinate which is lost by the projection of the object onto an
image plane. These techniques fall into two categories. They can either
retrieve only the depth of a surface in 3-D space or allow for a full re-
construction of volumetric objects. Often depth imaging and volumetric
imaging are both called 3-D imaging. This causes a lot of confusion.

Even more confusing is the wide variety of both depth and volumetric
imaging techniques. Therefore this chapter will not detail all available
techniques. It rather focuses on the basic principles. Surprisingly or not,
there are only a few principles on which the wide variety of 3-D imaging
techniques is based. If you know them, it is easy to understand how they
work and what accuracy you can expect.

We start with the discussion of the basic limitation of projective imag-
ing for 3-D vision in Section 8.1.1 and then give a brief summary of the
basic principles of depth imaging (Section 8.1.2) and volumetric imag-
ing (Section 8.1.3). Then one section is devoted to each of the basic
principles of 3-D imaging: depth from triangulation (Section 8.2), depth
from time-of-flight (Section 8.3), depth from phase (interferometry) (Sec-
tion 8.4), shape from shading and photogrammetric stereo (Section 8.5),
and tomography (Section 8.6).

8.1.1 Basic Limitation of Projective Imaging

As we have discussed in detail in Sections 7.6.1 and 7.6.2, a projective
optical system is a linear shift-invariant system that can be described by
a point spread function (PSF) and optical transfer function (OTF).

The 3-D OTF for geometrical optics shows the limitations of a projec-
tive imaging system best (see Section 7.6.2):

5 1/2
h(q ks) = — Lo (1 k3 ) n(k3> 8.1)

mlgtanx| \©  g2tan? « 24 tan x

The symbols g and k3 denote the radial and axial components of the
wave number vector, respectively. Two severe limitations of 3-D imaging
immediately follow from the shape of the 3-D OTF.
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Complete loss in wide wave number range. As shown in Fig. 7.13b,
the 3-D OTF is rotationally symmetric around the k3 axis (z direction)
and nonzero only inside an angle cone of +« around the xy plane. Struc-
tures with a wide range of wave numbers especially around the z axis are
completely lost. We can “see” only structures in those directions from
which the optics collect rays.

Loss of contrast at high wave numbers. According to Eq. (8.1), the
OTFis inversely proportional to the radial wave number q. Consequently,
the contrast of a periodic structure is attenuated in proportion to its
wave number. As this property of the OTF is valid for all optical imaging
— including the human visual system — the question arises why can we
see fine structures at all?

The answer lies in a closer examination of the geometric structure
of the objects observed. Most objects in the natural environment are
opaque. Thus, we see only the surfaces, i.e., we do not observe real 3-D
objects but only 2-D surface structures. If we image a 2-D surface onto a
2-D image plane, the 3-D PSF also reduces to a 2-D function. Mathemat-
ically, this means a multiplication of the PSF with a § plane parallel to
the observed surface. Consequently, the unsharpness disk correspond-
ing to the distance of the surface from the lens now gives the 2-D PSF.
The restriction to 2-D surfaces thus preserves the intensity of all struc-
tures with wavelengths larger than the disk. We can see them with the
same contrast.

We arrive at the same conclusion in Fourier space. Multiplication of
the 3-D PSF with a 6 plane in the x space corresponds to a convolution
of the 3-D OTF with a ¢ line along the optical axis, i.e., an integration
in the corresponding direction. If we integrate the 3-D OTF along the
k coordinate, we actually get a constant independent of the radial wave

number g:
ol g tan x 1 , 271/2
<40 J I (O R dz’' = I. (8.2)
T |q tan «| qtan

—qtan «

To solve the integral, we substitute z”’ = z'/(q tan &) which yields an
integral over a unit semicircle.

In conclusion, there is a significant difference between surface imag-
ing (and thus depth imaging) and volumetric imaging. The OTF for sur-
face structures is independent of the wave number. However, for volu-
metric structures, we still have the problem of the decrease of the OTF
with the radial wave number. When observing such structures by eye or
with a camera, we will not be able to observe fine details. Projective imag-
ing systems are not designed to image true 3-D objects. Consequently,
volumetric imaging requires different techniques.
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8.1.2 Basic Principles of Depth Imaging

Depth imaging of a single opaque surface requires one additional piece
of information besides the brightness at each pixel of the image in or-
der to produce a depth image or range image. We can distinguish four
basic principles of depth imaging known as depth from paradigms. In
addition, depth can be inferred from the slope of surfaces by a paradigm
known as shape from shading.

Depth from triangulation. If we observe an object from two different
points of view separated by a base line b, the object will be seen under
a different angle to the base line from both positions. This technique is
known as triangulation and constitutes one of the basic techniques in
geodesy and cartography.

The triangulation technique is at the heart of a surprisingly wide va-
riety of techniques. At first glance these techniques appear so different
that it is difficult to believe that they are based on the same principle.

Depth from time-of-flight. This is another straightforward principle of
distance measurement. A signal is sent out, propagates with a character-
istic speed to the object, is reflected and travels back to the camera. The
travel time is directly proportional to the sum of the distances between
the sender and the object and the object and the receiver.

Depth from phase: interferometry. Interferometry canbe regarded as
a special form of time-of-flight distance measurement. This technique
measures distances of a fraction of the wavelength of the radiation by
measuring not only the amplitude (energy) of the radiation but also its
phase. Phase measurements are possible by superimposition of coherent
radiation (Section 6.3.3) leading to high intensities when the two super-
imposing wave fronts are in phase (constructive interference) and to low
intensities when they show a phase shift of 180° (1r, destructive inter-
ference). Light has wavelengths between 400 and 700 nm (Section 6.3.1
and Fig. 6.6). Consequently interferometric distance measurements with
light resolve distances in the nanometer range (10~ m) — a small frac-
tion of the wavelength.

Depth from coherency. Another inherent property of radiation is its
coherency length (Section 6.3.3), i.e., the maximum path difference at
which coherent superimposition is still possible. The coherency length
can easily be measured by the ability to generate interference patterns.
Coherency lengths can be as short as a few wavelengths. Depth from
coherency techniques fill in the gap in the distance range that can be
measured between interferometric techniques and time-of-flight tech-
niques.
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Shape from shading. The shape of surfaces can also be determined
from the local orientation of the surface elements. This is expressed
mathematically by the surface normal. Then, of course, the absolute
depth of surface is lost, but the depth profile can be computed by inte-
grating the surface inclination. The surface normal can be inferred from
the shading because the radiance of a surface depends on the angle of
incidence of the illumination source.

8.1.3 Basic Principles of Volumetric Imaging

Any depth from technique that can measure multiple depths simultane-
ously is also useful for volumetric imaging. The capability to measure
multiple depths is thus another important characteristic of a depth imag-
ing technique. In addition to the depth imaging techniques, there are two
new basic principles for volumetric images:

lHlumination slicing. In projective imaging, we do not know from which
depth the irradiance collected at the image plane originates. It could be
from any position of the projection ray (see Section 7.3.1 and Fig. 7.3).
However, the illumination can be arranged in such a way that only a
certain depth range receives light. Then we know from which depth the
irradiance at the image plane originates. When we scan the illumination
depth, a volumetric image can be taken.

Depth from multiple projections: tomography. A single projection
contains only partial information from a volumetric object. The ques-
tion therefore is, whether it is possible to take multiple projections from
different directions and to combine the different pieces of partial infor-
mation to a complete 3-D image. Such depth from multiple projections
techniques are known as tomography.

8.1.4 Characterization of 3-D Imaging Techniques

Depth imaging is characterized by two basic quantities, the depth res-
olution o, and the depth range Az. The depth resolution denotes the
statistical error of the depth measurement and thus the minimal resolv-
able depth difference. Note that the systematic error of the depth mea-
surement can be much larger (see discussion in Section 3.1). How the
resolution depends on the distance z is an important characteristic of a
depth imaging technique. It makes a big difference, for example, whether
the resolution is uniform, i.e., independent of the depth, or decreasing
with the distance z.

The depth range Az is the difference between the minimum and max-
imum depth that can be measured by a depth imaging technique. Con-
sequently, the ratio of the depth range and depth resolution, Az/o>,
denotes the dynamic range of depth imaging.
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Left camera |

Right camera ! [

Figure 8.1: A stereo camera setup.

8.2 Depth from Triangulation

Looking at the same object from different points of view separated by a base
vector b results in different viewing angles. In one way or the other, this differ-
ence in viewing angle results in a shift on the image plane, known as disparity,
from which the depth of the object can be inferred.

Triangulation-based depth measurements include a wide variety of different
techniques that — at first glance — have not much in common, but are still
based on the same principle. In this section we will discuss stereoscopy (Sec-
tion 8.2.1), active triangulation, where one of the two cameras is replaced by a
light source (Section 8.2.2), depth from focus (Section 8.2.3), and confocal mi-
croscopy (Section 8.2.4). In the section about stereoscopy, we also discuss the
basic geometry of triangulation.

8.2.1 Stereoscopy

Observation of a scene from two different points of view allows the distance of
objects to be determined. A setup with two imaging sensors is called a stereo
system. Many biological visual systems perform depth perception in this way.
Figure 8.1 illustrates how depth can be determined from a stereo camera setup.
Two cameras are placed close to each other with parallel optical axes. The
distance vector b between the two optical axes is called the stereoscopic basis.

An object will be projected onto different positions of the image plane because
it is viewed from slightly different angles. The difference in the position is
denoted as the disparity or parallax, p. It is easily calculated from Fig. 8.1:
X1—-b/2 a

X +bj2 d
X; d X; —IoX3. (8.3)

l

p="x1-'x1=d

The parallax is inversely proportional to the distance X3 of the object (zero for
an object at infinity) and is directly proportional to the stereoscopic basis and
the focal length of the cameras (d’ =~ f for distant objects). Thus the distance
estimate becomes more difficult with increasing distance. This can be seen
more clearly by using the law of error propagation (Section 3.3.3) to compute
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the error of X3 from :

bd’ bd’ X2
= o Oxy —

X -0, = :
3 p pz Op bd’o_p

(8.4)

Therefore, the absolute sensitivity for a depth estimate decreases with the dis-
tance squared. As an example, we take a stereo system with a stereoscopic
basis of 200 mm and lenses with a focal length of 100 mm. Then, at a distance
of 10 m the change in parallax is about 200 pym/m (about 20 pixel/m), while it
is only 2 um/m (0.2 pixel/m) at a distance of 100 m.

Parallax is a vector quantity and parallel to the stereoscopic basis b. This has the
advantage that if the two cameras are exactly oriented we know the direction of
the parallax beforehand. On the other hand, we cannot calculate the parallax in
all cases. If an image sector does not show gray value changes in the direction
of the stereo basis, then we cannot determine the parallax. This problem is
a special case of the so-called aperture problem which occurs also in motion
determination and will be discussed in detail in Section 14.2.2.

The depth information contained in stereo images can be perceived directly
with a number of different methods. First, the left and right stereo image can
be represented in one image, if one is shown in red and the other in green.
The viewer uses spectacles with a red filter for the right and a green filter for
the left eye. In this way, the right eye observes only the green and the left eye
only the red image. This method — called the anaglyph method — has the
disadvantage that no color images can be used. However, this method needs no
special hardware and can be projected, shown on any RGB monitor, or printed
out with standard printers.

Vertical stereoscopy also allows for the viewing of color stereo images [116].
The two component images are arranged one over the other. When viewed with
prism spectacles that refract the upper image to the right eye and the lower
image to the left eye, both images fuse into a 3-D image.

Other stereoscopic imagers use dedicated hardware. A common principle is
to show the left and right stereo image in fast alternation on a monitor and
switch the polarization direction of the screen synchronously. The viewer wears
polarizing spectacles that filter the correct images out for the left and right eye.
However, the anaglyph method has the largest potential for most applications,
as it can be used with almost any image processing workstation, the only ad-
ditional piece of hardware needed being red/green spectacles. A stimulating
overview of scientific and technical applications of stereo images is given by
Lorenz [129].

8.2.2 Depth from Active Triangulation

Instead of a stereo camera setup, one camera can be replaced by a light source.
For a depth recovery it is then necessary to identify at each pixel from which
direction the illumination is coming. This knowledge is equivalent to knowledge
of the disparity. Thus an active triangulation technique shares all basic features
with the stereo system that we discussed in the previous section.

Sophisticated techniques have been developed in recent years to code the light
rays in a unique way. Most commonly, light projectors are used that project
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Figure 8.2: Active triangulation by projection of a series of fringe patterns with
different wavelengths for binary coding of the horizontal position; from Wiora
[220].

fringe patterns with stripes perpendicular to the triangulation base line onto the
scene. A single pattern is not sufficient to identify the position of the pattern
on the image plane in a unique way, but with a sequence of fringe patterns with
different wavelengths, each horizontal position at the image plane of the light
projector can be identified by a unique sequence of dark and bright stripes. A
partial series of six such patterns is shown in Fig. 8.2.

Such a sequence of fringe patterns also has the advantage that — within the
limits of the dynamic range of the camera — the detection of the fringe pat-
terns becomes independent of the reflection coefficient of the object and the
distance-dependent irradiance of the light projector. The occlusion problem
that is evident from the shadow behind the espresso machine in Fig. 8.2 re-
mains.

The binary coding by a sequence of fringe patterns no longer works for fine
fringe patterns. For high-resolution position determination, as shown in Fig. 8.3,
phase-shifted patterns of the same wavelength work much better and resultin a
subpixel-accurate position at the image plane of the light projector. Because the
phase shift is only unique within a wavelength of the fringe pattern, in practice
a hybrid code is often used that determines the coarse position by binary coding
and the fine position by phase shifting.
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Figure 8.3: Active triangulation by phase-shifted fringe patterns with the same
wavelength. Three of four patterns are shown with phase shifts of 0, 90, and 180
degrees; from Wiora [220)].

8.2.3 Depth from Focus

The limited depth of field of a real optical system (Section 7.4.3) is another
technique for depth estimation. An object is only imaged without blurring if
it is within the depth of field. At first glance, this does not look like a depth
from triangulation technique. However, it has exactly the same geometry as
the triangulation technique. The only difference is that instead of two, multiple
rays are involved and the radius of the blurred disk replaces the disparity. The
triangulation base corresponds to the diameter of the optics. Thus depth from
focus techniques share all the basic properties of a triangulation technique. For
given optics, the resolution decreases with the square of the distance (compare
Eq. (8.4) with Eq. (7.21)).

The discussion on the limitations of projective imaging in Section 8.1.1 showed
that the depth from focus technique does not work for volumetric imaging,
because most structures, especially those in the direction of the optical axis,
vanish. Depth from focus is, however, a very useful and simple technique for
depth determination for opaque surfaces.

Steurer et al. [196] developed a simple method to reconstruct a depth map from
a light microscopic focus series. A depth map is a two-dimensional function
that gives the depth of an object point d — relative to a reference plane — as a
function of the image coordinates [x, y]" .

With the given restrictions, only one depth value for each image point needs to
be found. We can make use of the fact that the 3-D point spread function of op-
tical imaging discussed in detail in Section 7.6.1 has a distinct maximum in the
focal plane because the intensity falls off with the square of the distance from
the focal plane. This means that at all points where we get distinct image points
such as edges, lines, or local extremes, we will also obtain an extreme in the gray
value on the focal plane. Figure 8.4 illustrates that the point spread functions
of neighboring image points only marginally influence each other close to the
focal plane.
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surface

Figure 8.4: Superposition of the point spread function of two neighboring points
on a surface.

Figure 8.5: a Focus series with 16 images of a metallic surface taken with depth
distances of 2 um; the focal plane becomes deeper from left to right and from
top to bottom. b Depth map computed from the focus series. Depth is coded by

intensity. Objects closer to the observer are shown brighter. From Steurer et al.
[196].
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Figure 8.6: Principle of confocal laser scanning microscopy.

Steurer’s method makes use of the fact that a distinct maximum of the point
spread function exists in the focal plane. His algorithm includes the following
four steps:

1. Take a focus series with constant depth steps.

2. Apply a suitable filter such as the variance operator (Section 15.2.2) to empha-
size small structures. The highpass-filtered images are segmented to obtain
a mask for the regions with significant gray value changes.

3. In the masked regions, search for the maximum magnitude of the difference
in all the images of the focus series. The image in which the maximum occurs
gives a depth value for the depth map. By interpolation of the values the
depth position of the maximum can be determined more exactly than with
the depth resolution of the image series [180].

4. As the depth map will not be dense, interpolation is required. Steurer used
a region-growing method followed by an adaptive lowpass filtering which is
applied only to the interpolated regions in order not to corrupt the directly
computed depth values. However, other valid techniques, such as normal-
ized convolution (Section 11.6.2) or any of the techniques described in Sec-
tion 17.2, are acceptable.

This method was successfully used to determine the surface structure of worked
metal pieces. Figure 8.5 shows that good results were achieved. A filing can be
seen that projects from the surface. Moreover, the surface shows clear traces
of the grinding process.

This technique works only if the surface shows fine details. If this is not the case,
the confocal illumination technique of Scheuermann et al. [180] can be applied
that projects statistical patterns into the focal plane (compare Section 1.2.2 and
Fig. 1.3).

8.2.4 Confocal Microscopy

Volumetric microscopic imaging is of utmost importance for material and life
sciences. Therefore the question arises, whether it is possible to change the
image formation process — and thus the point spread function — so that the
optical transfer function no longer vanishes, especially in the z direction.
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Figure 8.7: Demonstration of confocal laser scanning microscopy (CLSM). a A
square pyramid-shaped crystal imaged with standard microscopy focused on the
base of the pyramid. b Similar object imaged with CLSM: only a narrow height
contour range, 2.5 um above the base of the square pyramid, is visible. ¢ Image
composed of a 6.2um depth range scan of CLSM images. Images courtesy of
Carl Zeiss Jena GmbH, Germany.

The answer to this question is confocal laser scanning microscopy. Its basic
principle is to illuminate only the points in the focal plane. This is achieved
by scanning a laser beam over the image plane that is focused by the optics of
the microscope onto the focal plane (Fig. 8.6). As the same optics are used for
imaging and illumination, the intensity distribution in the object space is given
approximately by the point spread function of the microscope. (Slight differ-
ences occur, as the laser light is coherent.) Only a thin slice close to the focal
plane receives a strong illumination. Outside this slice, the illumination falls
off with the distance squared from the focal plane. In this way contributions
from defocused objects outside the focal plane are strongly suppressed and
the distortions decrease. However, can we achieve a completely distortion-free
reconstruction? We will use two independent trains of thought to answer this
question.

Let us first imagine a periodic structure in the z direction. In conventional mi-
croscopy, this structure is lost because all depths are illuminated with equal
radiance. In confocal microscopy, however, we can still observe a periodic vari-
ation in the z direction because of the strong decrease of the illumination in-
tensity provided that the wavelength in the z direction is not too small.

The same fact can be illustrated using the PSF. The PSF of confocal microscopy
is given as the product of spatial intensity distribution and the PSF of the optical
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imaging. As both functions fall off with z~2, the PSF of the confocal microscope
falls off with z=#. This much sharper localization of the PSF in the z direction
results in a nonzero OTF in the z direction up to the z resolution limit.

The superior 3-D imaging of confocal laser scanning microscopy is demon-
strated in Fig. 8.7. An image taken with standard microscopy shows a crystal in
the shape of a square pyramid which is sharp only at the base of the pyramid
(Fig. 8.7a). Towards the top of the pyramid, the edges become more blurred.
In contrast, a single image taken with a confocal laser scanning microscopy
images only a narrow height range at all (Fig. 8.7b). An image composed of a
6.2 um depth scan by adding up all images shows a sharp image for the whole
depth range (Fig. 8.7c). Many fine details can be observed that are not visible in
the image taken with the conventional microscope. The laser-scanning micro-
scope has found widespread application in medical and biological sciences and
materials research.

8.3 Depth from Time-of-Flight

Time-of-flight techniques measure the delay caused by the time for a signal to
travel a certain distance. If the signal is sent out from the position of the camera,
it has to travel twice the distance between the camera and the object reflecting
the signal. Therefore the delay T is given by

2

=2 8.5)

c
where c is the travel speed of the signal. From Eq. (8.5) it is evident that the
statistical error of the depth measurement is independent of the distance to the
object. It only depends on the accuracy of the delay measurement:

cT c
2=t

> ~ Oy = EO'T. (8.6)

This is a significant advantage over triangulation techniques (Eq. (8.4)).

With time-of-flight techniques one immediately thinks of pulse modulation, i. e.,
measuring the time of flight by the delay between sending and receiving a short
pulse. The maximum measurable distance depends on the frequency with which
the pulses are sent to the object. With electromagnetic waves, delay measure-
ments are very demanding. Because the light speed c is 3 - 108 m/s, the delay
is only 6.7 ns per meter.

Pulse modulation is only one of many techniques to modulate the signal for
time-of-flight measurements. Another powerful technique is the continuous-
wave modulation (CW modulation). With this technique the signal is modulated
periodically and the delay is measured as a phase shift between the outgoing
and ingoing signal:

c c
¢ ~ 0,=—0 7
z 41TV z ®> 8.7)

where v is the frequency of the modulation. The depth range is given by the
fact that the phase can be measured uniquely only in a range of +7r:
As- S _cT

=5, = 2" (8.8)
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One of the most significant disadvantages of periodic modulation is thus the
limited depth range. This problem is overcome by pseudo-noise modulation
where the signal amplitude is randomly modulated. This technique combines
the high resolution of CW modulation with the large distance range of pulse
modulation.

8.4 Depth from Phase: Interferometry

Interferometry can be regarded as a special case of continuous-wave modula-
tion. The modulation is given directly by the frequency of the electromagnetic
radiation. It is still useful to regard interferometry as a special class of range
measurement technique because coherent radiation (Section 6.3.3) is required.
Because of the high frequencies of light, the phases of the outgoing and incom-
ing radiation cannot be measured directly but only by the amplitude variation
caused by the coherent optical superimposition of the outgoing and incoming
light.

The depth error and depth range for interferometric range measurements is
simply given by Eqgs. (8.7) and (8.8) and the relations ¢ = vA (Section 6.3.1):

27\74” o, = i%, Az = 5. (8.9)

s 4t 2

Because of the small wavelength of light (0.4-0.7 um), interferometric measure-
ments are extremely sensitive. The limited depth range of only half a wavelength
can be overcome by multiwavelength interferometry

A second class of interferometric range measuring techniques is possible with
radiation that shows a coherence length of only a few wavelengths. Then in-
terference patterns occur only for a short distance of a few wavelengths and
can thus be taken as a depth measurement in a scanning system. This type of
interferometry is known as white-light interferometry or coherency radar.

8.5 Shape from Shading

Shape from shading techniques do not infer the depth but the normal of sur-
faces and thus form an entirely new class of surface reconstruction techniques.
It is obvious that shape from shading techniques cannot infer absolute dis-
tances.

8.5.1 Shape from Shading for Lambertian Surfaces

We first apply this technique for diffuse reflecting opaque objects. For the sake
of simplicity, we assume that the surface of a Lambertian object is illuminated
by parallel light. The radiance L of a Lambertian surface (Section 6.4.3) does
not depend on the viewing angle and is given by:

L= %A)E cosy, (8.10)
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Figure 8.8: Radiance computation illustrated in the gradient space for a Lam-
bertian surface illuminated by a distant light source with an incidence angle 0;
and an azimuthal angle ¢; of zero.

where E is the irradiance and y the angle between the surface normal and the
illumination direction. The relation between the surface normal and the inci-
dent and exitant radiation can most easily be understood in the gradient space.
This space is spanned by the gradient of the surface height a(X,Y):

da da

: T
s=Va-= [a—x, a—Y] = [s1,82]" . (8.11)

This gradient is directly related to the surface normal n by

T

n= [—g—;,—g—g,l] =[-s1,-52,1]". (8.12)
This equations shows that the gradient space can be understood as a plane
parallel to the XY plane at a height Z = 1 if we invert the directions of the
X and Y axes. The X and Y coordinates where the surface normal vector and
other directional vectors intersect this plane are the corresponding coordinates
in the gradient space.

The geometry of Lambertian reflection in the gradient space is illustrated in
Fig. 8.8. Without loss of generality, we set the direction of the light source as
the x direction. Then, the light direction is given by the vector I = (tan 0;,0,1)7,
and the radiance L of the surface can be expressed as

_pA) . n'l p(d) —s;tan6; +1

L= = . (8.13)
™ nlll n \/1+tan29i\/1+sf+s§

Contour plots of the radiance distribution in the gradient space are shown in
Fig. 8.9a for a light source with an incidence angle of 0; = 0°. In the case of
the light source at the zenith, the contour lines of equal radiance mark lines
with constant absolute slope s = (sf + 55)1/ 2, However, the radiance changes
with surface slope are low, especially for low surface inclinations. An oblique
illumination leads to a much higher contrast in the radiance (Fig. 8.9b). With
an oblique illumination, however, the maximum surface slope in the direction
opposite to the light source is limited to 7m/2 — 0 when the surface normal is
perpendicular to the light direction.
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Figure 8.9: Contour plot of the radiance of a Lambertian surface with homoge-
neous reflectivity illuminated by parallel light shown in the gradient space for
surface slopes between —1 and 1. The radiance is normalized to the radiance for
a flat surface. a Zero incidence angle 0; = 0°; the spacing of the contour lines
is 0.05. b Oblique illumination with an incidence angle of 45° and an azimuthal
angle of 0°; the spacing of the contour lines is 0.1.

With a single illumination source, the information about the surface normal is
incomplete even if the surface reflectivity is known. Only the component of
the surface normal in the direction of the illumination change is given. Thus
surface reconstruction with a single illumination source constitutes a complex
mathematical problem that will not be considered further here. In the next sec-
tion we consider how many illuminations from different directions are required
to solve the shape from shading problem in a unique way. This technique is
known as photometric stereo.

8.5.2 Photogrammetric Stereo

The curved contour lines in Fig. 8.9 indicate that the relation between surface
slope and radiance is nonlinear. This means that even if we take two differ-
ent illuminations of the same surface (Fig. 8.10), the surface slope may not be
determined in a unique way. This is the case when the curved contour lines
intersect each other at more than one point. Only a third exposure with yet
another illumination direction would make the solution unique.

Using three exposures also has the significant advantage that the reflectivity of
the surface can be eliminated by the use of ratio imaging. As an example, we
illuminate a Lambertian surface with the same light source from three different
directions

L, = [0,0, 1],
[tan 6;, 0, 11, (8.14)
[0, tan@;, 11"

— o~
W N
([l
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Figure 8.10: Superimposed contour plots of the radiance of a Lambertian surface
with homogeneous reflectivity illuminated by a light source with an angle of
incidence of 45° and an azimuthal angle of 0° and 90°, respectively.

Then
—s1tan6; +1 —sytan6; +1

—, L3/L = —
\/1 + tan? 0; 4/1 + tan? 6;

Now the equations are linear in s; and s and — even better — they are de-
coupled: s; and s, depend only on L,/L; and L3/L;, respectively (Fig. 8.11). In
addition, the normalized radiance in Eq. (8.15) does not depend on the reflec-
tivity of the surface. The reflectivity of the surface is contained in Eq. (8.10) as
a factor and thus cancels out when the ratio of two radiance distributions of
the same surface is computed.

Ly/L, = (8.15)

8.5.3 Shape from Refraction for Specular Surfaces

For specular surfaces, the shape from shading techniques discussed in Sec-
tion 8.5.1 do not work at all as light is only reflected towards the camera when
the angle of incidence from the light source is equal to the angle of reflectance.
Thus, extended light sources are required. Then, it turns out that for transpar-
ent specular surfaces, shape from refraction techniques are more advantageous
than shape from reflection techniques because the radiance is higher, steeper
surface slopes can be measured, and the nonlinearities of the slope/radiance
relationship are lower.

A shape from refraction technique requires a special illumination technique, as
no significant radiance variations occur, except for the small fraction of light
reflected at the surface. The base of the shape from refraction technique is the
telecentric illumination system which converts a spatial radiance distribution
into an angular radiance distribution. Then, all we have to do is to compute the
relation between the surface slope and the angle of the refracted beam and to
use a light source with an appropriate spatial radiance distribution.

Figure 8.12 illustrates the optical geometry for the simple case when the camera
is placed far above and a light source below a transparent surface of a medium



< start menu

8.5 Shape from Shading 233
a b
1 1
s, S2
0.5 0.5

-0.5

-1 -0.5 0 0.5 S, 1 -1 -0.5 0 0.5 sy 1

Figure 8.11: Contour plots of the radiance of a Lambertian surface illuminated
by parallel light with an incidence angle of 45° and an azimuthal angle of 0° (a)
and 90° (b), respectively, and normalized by the radiance of the illumination at
07 incidence according to Eq. (8.15). The step size of the contour lines is 0.1. Note
the perfect linear relation between the normalized radiance and the x and 7y
surface slope components.

with a higher index of refraction. The relation between the surface slope s and
the angle y is given by Jahne et al. [97] as

ntany
n—+/1+tany

with n = ny/n;. The inverse relation is

Y2+ n?-1)s2-1 1 ( 32»

s=tan = z4tany<1+%tan2 y) (8.16)

—s{1—-—-=s (8.17)

T+ mZ-1)s2+s2 4 32
In principle, the shape from refraction technique works for slopes up to infinity
(vertical surfaces). In this limiting case, the ray to the camera grazes the surface

(Fig. 8.12b) and
tany = vn? — 1. (8.18)

The refraction law thus causes light rays to be inclined in a certain direction
relative to the slope of the water surface. If we make the radiance of the light
source dependent on the direction of the light beams, the water surface slope
becomes visible. The details of the construction of such a system are described
by Jahne et al. [97]. Here we just assume that the radiance of the light rays is
proportional to tany in the x; direction. Then we obtain the relation

Vn? +(m?-1)s2 -1
VnZ+ (n?2 - 1)s% + 52

Of course, again we have the problem that from a scalar quantity such as the
radiance no vector component such as the slope can be inferred. The shape

tany = s

Los, (8.19)
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Figure 8.12: Refraction at an inclined surface as the basis for the shape from
refraction technique. The camera is far above the surface. a Rays emitted by the
light source at an angle y are refracted in the direction of the camera. b Even
for a slope of infinity (vertical surface, « = 90 °), rays from the light source meet
the camera.
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Figure 8.13: Radiance map for the shape from refraction technique where the
radiance in a telecentric illumination source varies linearly in the x; direction.

from refraction technique, however, comes very close to an ideal setup. If the
radiance varies only linearly in the x; direction, as assumed, the radiance map
in the gradient space is also almost linear (Fig. 8.13). A slight influence of the
cross slope (resulting from the nonlinear terms in Eq. (8.19) in s?) becomes
apparent only at quite high slopes.

Ratio imaging can also be used with the shape from refraction technique. Color
images have three independent primary colors: red, green, and blue. With a
total of three channels, we can identify the position in a telecentric illumination
system — and thus the inclination of the water surface — uniquely and still have
one degree of freedom left for corrections. With color imaging we also have the



< start menu

8.6 Depth from Multiple Projections: Tomography 235

advantage that all three illuminations are taken simultaneously. Thus moving
objects can also be observed.

A unique position coding with color can be achieved, for example, with the
following color wedges:

G(s) (1/2 + cs1)Eo(s)
R(s) = [1/2-c/2(s1+ $2)]Eo(s) (8.20)
B(s) [1/2 —c/2(s1 — $2)1Eo(S).

We have again assumed a linear relation between one component of the slope
and the radiance, with nonlinear isotropic corrections of the form s;Eq(s); c is
a calibration factor relating the measured radiance to the surface slope.

We now have three illuminations to determine two slope components. Thus,
we can take one to compensate for unwanted spatial variation of Ey. This can
be done by normalizing the three color channels by the sum of all channels
G+R+B:

T
G+R+B  3\2 ')
(8.21)
_B-R _ 2
G+R+B 3%
Then the position on the wedge from which the light originates is given as

1 2G-R-B 3 B-R

T GIR B’ *T2G+R+B (8.22)

From these position values, the x and v components of the slope can be com-
puted according to Eq. (8.19).

8.6 Depth from Multiple Projections: Tomography

8.6.1 Principle

Tomographic methods do not generate a 3-D image of an object directly, but
allow reconstruction of the 3-D shape of objects using suitable methods. To-
mographic methods can be considered as an extension of stereoscopy. With
stereoscopy only the depth of surfaces can be inferred, but not the 3-D shape
of transparent objects. Intuitively, we may assume that it is necessary to view
such an object from as many directions as possible.

Tomographic methods use radiation that penetrates an object from different
directions. If we use a point source (Fig. 8.14b), we observe a perspective or
fan-beam projection on the screen behind the object just as in optical imaging
(Section 7.3). Such an image is taken from different projection directions by
rotating the point source and the projection screen around the object. In a
similar way, we can use parallel projection (Fig. 8.14a) which is easier to analyze
but harder to realize. If the object absorbs the radiation, the intensity loss
measured in the proj